Publications by authors named "Jane D Fudyma"

The research field of soil viral ecology continues to advance rapidly as the roles of viruses in the functioning of soil ecosystems are increasingly recognized. To address recent developments in the field, the second International Soil Virus Conference was held in Livermore, California, USA, from June 25 to 27th, 2024, providing soil viral ecologists the opportunity to share new findings and suggest guidelines for future research, while encouraging international scientific discussion and collaboration. The meeting was held in person with sessions simultaneously streamed online.

View Article and Find Full Text PDF

Viruses impact microbial systems through killing hosts, horizontal gene transfer, and altering cellular metabolism, consequently impacting nutrient cycles. A virus-infected cell, a "virocell," is distinct from its uninfected sister cell as the virus commandeers cellular machinery to produce viruses rather than replicate cells. Problematically, virocell responses to the nutrient-limited conditions that abound in nature are poorly understood.

View Article and Find Full Text PDF

Wetlands store 20-30% of the world's soil carbon, and identifying the microbial controls on these carbon reserves is essential to predicting feedbacks to climate change. Although viral infections likely play important roles in wetland ecosystem dynamics, we lack a basic understanding of wetland viral ecology. Here 63 viral size-fraction metagenomes (viromes) and paired total metagenomes were generated from three time points in 2021 at seven fresh- and saltwater wetlands in the California Bodega Marine Reserve.

View Article and Find Full Text PDF

As direct mediators between plants and soil, roots play an important role in metabolic responses to environmental stresses such as drought, yet these responses are vastly uncharacterized on a plant-specific level, especially for co-occurring species. Here, we aim to examine the effects of drought on root metabolic profiles and carbon allocation pathways of three tropical rainforest species by combining cutting-edge metabolomic and imaging technologies in an in situ position-specific C-pyruvate root-labeling experiment. Further, washed (rhizosphere-depleted) and unwashed roots were examined to test the impact of microbial presence on root metabolic pathways.

View Article and Find Full Text PDF

mosses dominate peatlands by employing harsh ecosystem tactics to prevent vascular plant growth and microbial degradation of these large carbon stores. Knowledge about -produced metabolites, their structure and their function, is important to better understand the mechanisms, underlying this carbon sequestration phenomenon in the face of climate variability. It is currently unclear which compounds are responsible for inhibition of organic matter decomposition and the mechanisms by which this inhibition occurs.

View Article and Find Full Text PDF