98%
921
2 minutes
20
Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979031 | PMC |
http://dx.doi.org/10.1038/s41467-024-46606-z | DOI Listing |
PLoS Biol
September 2025
Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America.
Despite the success of antiretroviral therapy in suppressing plasma viremia in people living with human immunodeficiency virus type-1 (HIV-1), persistent viral RNA expression in tissue reservoirs is observed and can contribute to HIV-1-induced immunopathology and comorbidities. Infection of long-lived innate immune cells, such as tissue-resident macrophages and microglia may contribute to persistent viral RNA production and chronic inflammation. We recently reported that de novo cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) in macrophages and microglia leads to MDA5 and MAVS-dependent innate immune sensing and induction of type I IFN responses, demonstrating that HIV icRNA is a pathogen-associated molecular pattern (PAMP).
View Article and Find Full Text PDFUnlabelled: Heterogenous transcription start site (TSS) usage dictates the structure and function of unspliced HIV-1 RNAs (usRNA). We and others have previously reported that expression and Rev/CRM1-mediated nuclear export of HIV-1 usRNA in macrophages activates MDA5, MAVS, and innate immune signaling cascades. In this study, we reveal that MDA5 sensing of viral usRNA is strictly determined by TSS, 5' leader structure, and RNA function.
View Article and Find Full Text PDFJ Int AIDS Soc
September 2025
Department of Infectious Diseases, Imperial College London, London, UK.
Introduction: Low bone mineral density (BMD) has been described in children and young people with perinatally acquired HIV (PHIV), which may be related to both traditional (e.g. low body mass index and malnutrition) and HIV-related risk factors (e.
View Article and Find Full Text PDFViruses
August 2025
State Key Laboratory of Virology and Biosafety, Department of Infectious Diseases, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
Persistent type I interferon (IFN-I) signaling compromises adaptive anti-HIV-1 T cell immunity and promotes viral reservoir persistence, yet its effects on innate lymphoid cells during chronic infection remain unclear. Through integrated single-cell RNA sequencing and functional validation in HIV-1-infected humanized mice with combination antiretroviral therapy (cART) and IFN-I signaling blockade, we reveal IFN-I-induced dysfunction of natural killer (NK) cells and group 3 innate lymphoid cells (ILC3s). Mechanistically, the IFN-I-CD9 axis drives NK cells toward a decidual NK cell-like phenotype, impairing their cytotoxic activity.
View Article and Find Full Text PDFPain
May 2025
Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
It is estimated that millions of people worldwide suffer from chronic pain associated with infectious diseases and their treatment. Notably, numerous pathogens can cause chronic pain in people with current or past infections but the underlying mechanisms of pain development and persistence are only partially known. To help those people, classification systems are important to differentiate chronic pain that is not affected by the infection from chronic pain that started or worsened in relation to the infection.
View Article and Find Full Text PDF