98%
921
2 minutes
20
Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for Cu radiolabeling ([Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [Cu]Cu-ICT-01. [Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE mouse model, [Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [Cu]Cu-ICT-01 to human CD163. This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064833 | PMC |
http://dx.doi.org/10.2967/jnumed.123.266910 | DOI Listing |
JID Innov
November 2025
Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan.
Previous studies have revealed that skin T cells accumulate and maintain immune responses in the elderly. However, we questioned why these functional T cells fail to recognize and eliminate malignant cells, making elderly skin more prone to developing malignant tumors. To address this question, we examined the overall skin microenvironment in aging using the Nanostring nCounter system and 10x Xenium digital spatial RNA sequencing.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University; Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedici
Xenogeneic cell transplantation often faces significant immune rejection, even in immunodeficient animal models. Among residual immune components, macrophages can actively phagocytose transplanted human cells, posing a challenge to long-term engraftment. To address this, we developed a standardized in vitro assay to quantify macrophage-mediated phagocytosis of human versus rat red blood cells (RBCs).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
School of Public Health, Inner Mongolia Medical University, Huhhot, China.
Type 2 diabetes (T2DM) and tuberculosis (TB) both regulate inflammation and may exert synergistic or antagonistic effects through shared immune pathways. Previous studies have demonstrated that T2DM is a risk factor for TB. However, at the level of gene regulatory networks, it remains unclear whether there are key interaction nodes linking these two diseases.
View Article and Find Full Text PDFTurk J Biol
May 2025
Izmir Biomedicine and Genome Center, İzmir, Turkiye.
Background/aim: is a polyherbal formulation of 15 ingredients. It has antiinflammatory and antimicrobial properties and are effective in managing the symptoms of H1N1 swine flu and COVID-19. However, its mechanism of action is not fully understood.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Division of Biochemistry and Molecular Biology, Siberian State Medical University, Ministry of Health of the Russian Federation, 634050 Tomsk, Russia.
Background: Sarcopenia is a complex, multifactorial condition characterized by progressive loss of muscle mass, strength, and function. Despite growing awareness, the early diagnosis and pathophysiological characterization of this condition remain challenging due to the lack of integrative biomarkers.
Objective: This study aimed to conduct a comprehensive multilevel profiling of clinical parameters, immune cell phenotypes, extracellular vesicle (EV) signatures, and biochemical markers to elucidate biological gradients associated with different stages of sarcopenia.