Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lignin is an abundant polyaromatic polymer with a wide range of potential future uses. However, the conversion of lignin into valuable products comes at a cost, and medium- to high-value applications are thus appropriate. Two examples of these are polymers (e.g., as fibers, plasticizers, or additives) and flow batteries (e.g., as redox species). Both of these areas would benefit from lignin-derived molecules with potentially low molecular weight and high (electro)chemical functionality. A promising route to obtain these molecules is oxidative lignin depolymerization, as it enables the formation of targeted compounds with multiple functionalities. An application with high potential in the production of plastics is the synthesis of new sustainable polymers. Employing organic molecules, such as quinones and heterocycles, would constitute an important step toward the sustainability of aqueous flow batteries, and lignin and its derivatives are emerging as redox species, mainly due to their low cost and renewability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966304 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.109418 | DOI Listing |