Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
One of the major challenges in harnessing the therapeutic benefits of curcumin (an active ingredient from turmeric) is its poor bioavailability due to its short biological half-life. In this regard, nanoformulations have shown tremendous hope for improving the pharmacokinetic and therapeutic behavior of curcumin by altering its biological stability and bioavailability. Biopolymers, especially alginate and chitosan, have received special attention as excipients to prepare nanoformulations of curcumin due to their abundant availability, biocompatibility, and amicability to form different types of self-assembled structures and ease of undergoing chemical modifications. However, there are certain challenges, such as poor water solubility under physiological conditions and heterogeneity with regard to molecular weight and large-scale production of well-preserved nanostructures. Substantial advancement has been achieved towards overcoming these challenges by developing newer derivatives through a chemical modifications approach, and this has ascertained the suitability of alginate and chitosan as excipients for drug delivery systems (DDS). The present minireview briefly discusses curcumin and its limitation as a drug molecule, carbohydrates as DDS, and the recent developments related to the alginate and chitosan-based nanoformulations of curcumin. Special emphasis has been given to highlighting the impact of alginate and chitosan-based nanoformulations in improving the therapeutic efficacy and bioavailability of curcumin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975060 | PMC |
http://dx.doi.org/10.3390/pharmaceutics16030423 | DOI Listing |