A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Effects of Etchant on via Hole Taper Angle and Selectivity in Selective Laser Etching. | LitMetric

The Effects of Etchant on via Hole Taper Angle and Selectivity in Selective Laser Etching.

Micromachines (Basel)

Department of Laser & Electron Beam Technologies, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This research focuses on the manufacturing of a glass interposer that has gone through glass via (TGV) connection holes. Glass has unique properties that make it suitable for 3D integrated circuit (IC) interposers, which include low permittivity, high transparency, and adjustable thermal expansion coefficient. To date, various studies have suggested numerous techniques to generate holes in glass. In this study, we adopt the selective laser etching (SLE) technique. SLE consists of two processes: local modification via an ultrashort pulsed laser and chemical etching. In our previous study, we found that the process speed can be enhanced by changing the local modification method. For further enhancement in the process speed, in this study, we focus on the chemical etching process. In particular, we try to find a proper etchant for TGV formation. Here, four different etchants (HF, KOH, NaOH, and NHF) are compared in order to improve the etching speed. For a quantitative comparison, we adopt the concept of selectivity. The results show that NHF has the highest selectivity; therefore, we can tentatively claim that it is a promising candidate etchant for generating TGV. In addition, we also observe a taper angle variation according to the etchant used. The results show that the taper angle of the hole is dependent on the concentration of the etchant as well as the etchant itself. These results may be applicable to various industrial fields that aim to adjust the taper angle of holes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971941PMC
http://dx.doi.org/10.3390/mi15030320DOI Listing

Publication Analysis

Top Keywords

taper angle
16
selective laser
8
laser etching
8
holes glass
8
local modification
8
chemical etching
8
process speed
8
etching
5
etchant
5
effects etchant
4

Similar Publications