98%
921
2 minutes
20
In this paper, we discuss how the clustering analysis technique can be applied to analyze functional magnetic resonance imaging (fMRI) time-series data in the context of glioblastoma (GBM), a highly heterogeneous brain tumor. The precise characterization of GBM is challenging and requires advanced analytical approaches. We have synthesized the existing literature to provide an overview of how clustering algorithms can help identify unique patterns within the dynamics of GBM. Our review shows that the clustering of fMRI time series has great potential for improving the differentiation between various subtypes of GBM, which is pivotal for developing personalized therapeutic strategies. Moreover, this method proves to be effective in capturing temporal changes occurring in GBM, enhancing the monitoring of disease progression and response to treatment. By thoroughly examining and consolidating the current research, this paper contributes to the understanding of how clustering techniques applied to fMRI data can refine the characterization of GBM. This article emphasizes the importance of incorporating cutting-edge data analysis techniques into neuroimaging and neuro-oncology research. By providing a detailed perspective, this approach may guide future investigations and boost the development of tailored therapeutic strategies for GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968478 | PMC |
http://dx.doi.org/10.3390/brainsci14030296 | DOI Listing |
Mikrochim Acta
September 2025
Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
September 2025
Sárospatak College, Sztárai Institute, University of Tokaj, Eötvöst str. 7, Sárospatak, 3944, Hungary.
Generalized Anxiety Disorder (GAD) is characterized by excessive worry and physical symptoms of prolonged anxiety. Patients with subclinical GAD-states (sub-GAD) do not fulfill the diagnostic criteria of GAD, but they often show a disease burden similar to GAD, and the subclinical state may turn into a full syndrome. Neuroinflammation may contribute to changes in brain structures in sub-GAD, but direct evidence remains lacking.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.
View Article and Find Full Text PDFNature
September 2025
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.
View Article and Find Full Text PDFNature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDF