Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present work, physio-biochemical and DNA methylation analysis were conducted in wheat (Triticum aestivum L.) cultivars "Bolani" (drought-tolerant) and "Sistan" (drought-sensitive) during drought treatments: well-watered (at 90% field capacity (FC)), mild stress (at 50% FC, and severe stress (at 25% FC). During severe stress, O and HO content in cultivar Sistan showed significant increase (by 1.3 and 2.5-fold, respectively) relative to cultivar Bolani. In Bolani, the increased levels of radical scavenging activity (by 32%), glycine betaine (GB) (by 11.44%), proline (4-fold), abscisic acid (by 63.76%), and more stability of relative water content (RWC) (2-fold) were observed against drought-induced oxidative stress. Methylation level significantly decreased from 70.26% to 60.64% in Bolani and from 69.06% to 59.85% in Sistan during stress, and higher decreased tendency was related to CG and CHG in Bolani but CG in Sistan under severe stress. Methylation patterns showed that the highest polymorphism in Bolani was mainly as CG. As the intensity of stress increased, the enhanced physio-biochemical responses of Bolani cultivar were accompanied by a more decrease in the number of unchanged bands. According to heat map analysis, the highest difference (84.38%) in methylation patterns was observed between control and severe stress. Multivariate analysis using principal component analysis (PCA) showed a cultivar-specific methylation during stress and that methylation changes between cultivars are much higher than that of within a cultivar. Higher methylation to demethylation in Bolani (30.06 vs. 22.12%) compared to that of cultivar Sistan (23.21 vs. 30.15%) indicated more demethylation did not induce tolerance responses in Sistan. Sequencing differentially methylated fragments along with qRT-PCR analysis showed the efficient role of various DNA fragments, including demethylated fragments such as phosphoenol pyruvate carboxylase (PEPC), beta-glucosidase (BGlu), glycosyltransferase (GT), glutathione S-transferase (GST) and lysine demethylase (LSD) genes and methylated fragments like ubiquitin E2 enzyme genes in the development of drought tolerance. These results suggested the specific roles of DNA methylation in development of drought tolerance in wheat landrace.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108516DOI Listing

Publication Analysis

Top Keywords

severe stress
16
dna methylation
12
stress methylation
12
stress
10
methylation
9
physio-biochemical dna
8
methylation analysis
8
cultivar sistan
8
methylation patterns
8
methylated fragments
8

Similar Publications

Background: Because the myocardium thickness and blood flow of the right ventricular (RV) are lower than those of the left ventricle, it is challenging to perceive the RV myocardium in normal individuals. This study aimed to measure the myocardial perfusion in the RV (myocardial blood flow [MBF], myocardial flow reserve [MFR]) from 13N-ammonia PET images and investigate the associations between the MBF and MFR in patients with and without coronary artery disease (CAD) in the right coronary artery (RCA) region. A total 121 MBF and MFR were retrospectively measured from PET images by referring to the radioactivity and clinical blood flow values of the left ventricle.

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF

Tobacco brown spot disease (TBSD), is a severe leaf disease caused by Alternaria alternata, and its management heavily relies on dicarboximide fungicides. This study analyzed procymidone, a dicarboximide fungicide, resistance in 96 strains of A. alternata isolated from tobacco in Guizhou Province.

View Article and Find Full Text PDF

CYP72A15 confers resistance against penoxsulam to Echinochloa phyllopogon.

Pestic Biochem Physiol

November 2025

Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, PR China. Electronic address:

As the weed Echinochloa phyllopogon has rapidly developed multi- and cross-resistance to several herbicides, we aimed to determine the mechanism underlying penoxsulam resistance in weeds. There was no target mutation in the tested population, and P450 enzyme activity was significantly higher in the penoxsulam-treated resistant population, confirming that non-target-site resistance was dominant. The antioxidant enzyme activity of the resistant population was higher than that of the sensitive population following the application of the penoxsulam and cleared HO faster.

View Article and Find Full Text PDF

Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.

View Article and Find Full Text PDF