Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spin-polarized electrons can improve the efficiency and selectivity of photo- and electro-catalytic reactions, as demonstrated in the past with magnetic or magnetized catalysts. Here, we present a scheme in which spin-polarized charge separation occurs at the interfaces of nonmagnetic semiconductors and molecular films in the absence of a magnetic field. We take advantage of the spin-valley-locked band structure and valley-dependent optical selection rule in group VI transition metal dichalcogenide (TMDC) monolayers to generate spin-polarized electron-hole pairs. Photoinduced electron transfer from WS to fullerene (C) and hole transfer from MoSe to phthalocyanine (HPc) are found to result in spin polarization lifetimes that are 1 order of magnitude longer than those in the TMDC monolayers alone. Our findings connect valleytronic properties of TMDC monolayers to spin-polarized interfacial charge transfer and suggest a viable route toward spin-selective photocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c00956DOI Listing

Publication Analysis

Top Keywords

tmdc monolayers
12
spin-polarized charge
8
charge separation
8
spin-polarized
5
separation two-dimensional
4
two-dimensional semiconductor/molecule
4
semiconductor/molecule interfaces
4
interfaces spin-polarized
4
spin-polarized electrons
4
electrons improve
4

Similar Publications

The integration of graphene with other 2D materials has been extensively studied over the past decade to realize high-performance devices unattainable with single materials. Graphene-transition metal dichalcogenides (TMDCs) such as MoS, WS, MoSe, and WSe vertical heterostructures have demonstrated promise in numerous electronic and optoelectronic applications due to the wide bandgap range and strong light-matter interaction in TMDCs, and the ability to form electrostatically tunable junctions with graphene. However, conventional methods for TMDCs growth, including chemical vapor deposition (CVD), electrodeposition, and atomic layer deposition (ALD), require high temperatures, which can degrade graphene's electrical and structural properties.

View Article and Find Full Text PDF

2D monolayered transition-metal dichalcogenides (TMDCs) are promising materials for realizing ultracompact, low-threshold semiconductor lasers. And the development of the electrical-driven TMDC devices is crucial for enhancing the integration potential of practical optoelectronic systems. However, at the current stage, the electrically-driven 2-D TMDC laser has never been realized.

View Article and Find Full Text PDF

The memristor is a cornerstone for developing novel non-volatile memory devices that enable brain-like efficient processing and storage capabilities. Two-dimensional transition metal dichalcogenide (TMDC)-based memristors are gaining increasing attention due to the advantages they present over their bulk counterparts. In this work, we employed first-principles calculations to demonstrate that dopants play a significant role in reducing the cycle-to-cycle variability and in lowering the contact resistance in monolayer WS-based memristor.

View Article and Find Full Text PDF

We have explored the potential of nanoscale vacuum channel transistors that utilize the edges of transition-metal dichalcogenides (TMDCs) as field emitters for high-frequency applications. The angstrom-scale thickness of monolayer TMDCs in a two-dimensional structure induces a strong field enhancement effect at the edge, facilitating cold emission. Additionally, their semiconducting nature enables control of the emission current by adjusting the tunneling barrier height through Fermi level control the gate structure.

View Article and Find Full Text PDF

High-temperature neuromorphic devices are vital for space exploration and operations in harsh environments such as manufacturing units. To fulfil this need, researchers are developing technologies that imitate the human brain in structure and function. This need is further pushed by the growth of the Internet of Things (IoT), demanding massive computing power and processing of data.

View Article and Find Full Text PDF