98%
921
2 minutes
20
Gravity and mechanical forces cause important alterations in the human skeletal system, as demonstrated by space flights. Innovative animal models like zebrafish embryos and medaka have been introduced to study bone response in ground-based microgravity simulators. We used, for the first time, adult zebrafish in simulated microgravity, with a random positioning machine (RPM) to study bone remodeling in the scales. To evaluate the effects of microgravity on bone remodeling in adult bone tissue, we exposed adult zebrafish to microgravity for 14 days using RPM and we evaluated bone remodeling on explanted scales. Our data highlight bone resorption in scales in simulated microgravity fish but also in the fish exposed, in normal gravity, to the vibrations produced by the RPM. The osteoclast activation in both rotating and non-rotating samples suggest that prolonged vibrations exposure leads to bone resorption in the scales tissue. Stress levels in these fish were normal, as demonstrated by blood cortisol quantification. In conclusion, vibrational mechanical stress induced bone resorption in adult fish scales. Moreover, adult fish as an animal model for microgravity studies remains controversial since fish usually live in weightless conditions because of the buoyant force from water and do not constantly need to support their bodies against gravity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969198 | PMC |
http://dx.doi.org/10.3390/cells13060509 | DOI Listing |
Strategies to stimulate the regeneration of neurons in the adult central nervous system can offer universal solutions for neurodegenerative diseases. Taking lessons from naturally regenerating species, such as the zebrafish, we have previously shown that vector-mediated expression of proneural transcription factors can stimulate neurogenesis from the resident Müller glia (MG) population in the adult mouse retina, both and . To bring this closer to translation, we now show that vector-mediated expression of the proneural transcription factor ASCL1 can reprogram adult macaque MG into functional neurons.
View Article and Find Full Text PDFCell Mol Life Sci
September 2025
Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
The Wnt/β-catenin signaling pathway plays key roles in development and adult tissue homeostasis by controlling cell proliferation and cell fate decisions. TCF/LEF transcription factors play a pivotal role in this pathway, acting as repressors by recruiting co-repressors in the absence of Wnt signals, and as activators via β-catenin binding in the presence of Wnt signaling. While progress has been made in our understanding of Wnt signaling regulation, the underlying mechanism that regulates the protein stability of the TCF/LEF family is far less clear.
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. fans
Radiation-induced brain injury (RIBI) represents a severe complication of cranial radiotherapy, substantially diminishing patients' quality of life. Unlike conventional brain injuries, RIBI evokes a unique chronic neuroinflammatory response that notably aggravates neurodegenerative processes. Despite significant progress in understanding the molecular mechanisms related to neuroinflammation, the specific and precise mechanisms that regulate neuroinflammation in RIBI and its associated toxicological effects remain largely unclear.
View Article and Find Full Text PDFEcol Evol
September 2025
CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches IRD 224-CNRS 5290-Université de Montpellier Montpellier France.
Offspring sex ratio has been proposed as an indicator of the risk of developing certain cancers in humans, but offspring sex ratio may also be a consequence of the disease. In this study, we investigate this subject using the zebrafish, as a model system. First, we explore whether inducing skin cancer at an early stage of the host's life (embryonic stage) has the potential to influence sex determination and/or sex-specific mortality.
View Article and Find Full Text PDFTissue Cell
August 2025
Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India. Electronic address:
Acrylamide is a neurotoxic chemical widely present in carbohydrate-rich foods due to thermal processing. Chronic exposure to acrylamide can lead to oxidative stress, neuroinflammation, and neurodegeneration, resulting in motor dysfunction and cognitive impairments. In this study, we evaluated the neuroprotective potential of Tanshinone IIA (TIIA), a bioactive compound derived from Salvia miltiorrhiza (Danshen), on an adult zebrafish model induced with acrylamide.
View Article and Find Full Text PDF