Melatonin's Protective Effects on Neurons in an Cell Injury Model.

Discov Med

Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008 Nanjing, Jiangsu, China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Currently, the role of melatonin (MT) in neuronal damage remains unclear and this study aimed to explore the protective effects of MT on neurons in an cell injury model.

Methods: The Sprague Dawley (SD) rat traumatic brain injury (TBI) model was prepared, and brain tissue extract (BTE) from the injured area were generated. To establish a cell injury model , the BTE was added to the culture medium during the neuron culture process. MT was introduced into the culture medium of the cell injury model to observe its protective effects on neurons. Relevant molecular biology experiments were conducted to observe cellular oxidative stress status, inflammation, endoplasmic reticulum (ER) stress, mitochondrial damage, and neuronal apoptosis.

Results: When compared to the control group, the BTE group exhibited a significant increase in cellular oxidative stress, inflammation, neurofilament light polypeptide (NEFL) expression, and ER stress. Additionally, the mitochondrial DNA (mtDNA) copy number significantly decreased, and there was a higher count of apoptotic cells ( < 0.05). Upon the addition of MT to the culture medium of the in vitro cell injury model, there was a significant reduction in cellular oxidative stress, inflammation, and NEFL levels. This addition also mitigated ER stress, increased mtDNA copy numbers, and decreased the ratio of cell apoptosis ( < 0.05).

Conclusions: In the cell injury model, MT demonstrates the capacity to inhibit cellular oxidative stress, inflammation, and ER stress levels. Additionally, it diminishes mtDNA damage, fosters cell viability, and serves as a protective agent against both apoptosis and necrosis in neurons.

Download full-text PDF

Source
http://dx.doi.org/10.24976/Discov.Med.202436182.47DOI Listing

Publication Analysis

Top Keywords

cell injury
24
injury model
20
cellular oxidative
16
oxidative stress
16
protective effects
12
effects neurons
12
culture medium
12
stress inflammation
12
cell
8
neurons cell
8

Similar Publications

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Objectives Background: Monocyte anisocytosis (monocyte distribution width [MDW]) has been previously validated to predict sepsis and outcome in patients presenting in the emergency department and mixed-population ICUs. Determining sepsis in a critically ill surgical/trauma population is often difficult due to concomitant inflammation and stress. We examined whether MDW could identify sepsis among patients admitted to a surgical/trauma ICU and predict clinical outcome.

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF

IntroductionConditioning regimen-related hepatotoxicity is one of the frequent causes of morbidity and mortality in hematological disorder patients undergoing bone marrow transplantation-the current study aimed to evaluate the effects of conditioning regimens on liver enzymes.MethodsThis observational analytical study was conducted for one year and recruited patients who received conditioning regimens before undergoing Bone Marrow Transplantation for benign hematological disorder [aplastic anemia (AA) and beta-thalassemia major (BTM)]. Pre-and post-transplant assessment particularly liver function test was done.

View Article and Find Full Text PDF