98%
921
2 minutes
20
With the progression of regenerative medicine and cell therapy, the importance of cryopreservation techniques for cultured cells continues to rise. Traditional cryoprotectants, such as dimethyl sulfoxide and glycerol, are effective in cryopreserving suspended cells, but they do not demonstrate sufficient efficacy for two-dimensional (2D)-cultured cells. In the past decade, small molecules and polymers have been studied as cryoprotectants. Some L-amino acids have been reported to be natural and biocompatible cryoprotectants. However, the cryoprotective effects of D-amino acids have not been investigated for such organized cells. In the present study, the cryoprotective effects of D- and L-amino acids and previously reported cryoprotectants were assessed using HepG2 cells cultured on a microplate without suspending the cells. d-Proline had the highest cryoprotective effect on 2D-cultured cells. The composition of the cell-freezing solution and freezing conditions were then optimized. The d-proline-containing cell-freezing solution also effectively worked for other cell lines. To minimize the amount of animal-derived components, fetal bovine serum in the cell freezing solution was substituted with bovine serum albumin and StemFit (a commercial supplement for stem cell induction). Further investigations on the mechanism of cryopreservation suggested that d-proline protected enzymes essential for cell survival from freeze-induced damage. In conclusion, an effective and xeno-free cell-freezing solution was produced using d-proline combined with dimethyl sulfoxide and StemFit for 2D-cultured cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.3c01834 | DOI Listing |
Drug Deliv Transl Res
September 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
The three-dimensional (3D) culture system has emerged as an indispensable platform for modulating stem cell function in biomedicine, drug screening, and cell therapy. Despite a few studies confirming the functionality of 3D culture, the molecular factors underlying this process remain obscure. Here, we have utilized a hanging drop method to generate 3D spheroid-derived mesenchymal stem cells (3D MSCs) and compared them to conventionally 2D-cultured MSCs.
View Article and Find Full Text PDFJ Appl Toxicol
July 2025
Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan.
Drug-induced liver injury (DILI) is a serious adverse event and a common cause of postmarketing drug withdrawal. Despite nonclinical assessments of DILI risk, which are predominantly conducted in experimental animals, DILI remains a frequent adverse event, highlighting the need to improve nonclinical assessments. Extensive studies have demonstrated that primary human hepatocytes (PHHs) and their three-dimensional (3D) cultures, such as spheroids, exhibit high predictability of drug-induced hepatotoxicity in vitro.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2025
Cancer Cell Circuitry Laboratory, Translational Cancer Medicine, Medical Faculty, University of Helsinki. P.O. Box 63, Haartmaninkatu 8, FI-00014 Helsinki, Finland.
Anti-inflammatory M2 macrophages are highly relevant in various physiological processes ranging from tissue regeneration to cancer progression. However, conventional two-dimensional (2D) cell cultures limit our understanding of macrophage phenotypes and how they can be modulated for immunotherapeutic approaches. Moreover, there is a growing demand for scalable, animal-free hydrogels to replace animal-derived materials in three-dimensional (3D) models.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2025
Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic--glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted no obvious influence on the photophysical-chemical properties of HB, including UV-visible absorbance, fluorescence spectra, singlet oxygen (O) production capacity, and photostability.
View Article and Find Full Text PDFJ Nanobiotechnology
June 2025
Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 South 40Th Street, Philadelphia, PA19004, USA.
Background: Accumulating evidence demonstrates that the therapeutic effects of stem cells are most likely attributed to their secretome, composed of a myriad of bioactive factors, including small extracellular vesicles (EVs). Due to the potential benefits over cells in term of handling, preservation, stability, and safety, MSC-derived secretome is emerging as a novel cell-free therapeutic for regenerative therapy of various diseases. The purpose of this study is to optimize the xeno-free culture conditions to improve the secretome production by human gingiva-derived mesenchymal stem cells (GMSCs) and test their regenerative potential using an experimental rat model of tongue muscle defect.
View Article and Find Full Text PDF