98%
921
2 minutes
20
Photoelectrochemical (PEC) HO production via two-electron O reduction is promising for HO production without emitting CO. For PEC HO production, α-FeO is an ideal semiconductor owing to its earth abundance, superior stability in water, and an appropriate band gap for efficient solar light utilization. Moreover, its conduction band is suitable for O reduction to produce HO. However, a significant overpotential for water oxidation is required due to the poor surface properties of α-FeO. Thus, unassisted solar HO production is not yet possible. Herein, we demonstrate unassisted PEC HO production using α-FeO for the first time by applying glycerol oxidation, which requires less bias compared with water oxidation. We obtain maximum Faradaic efficiencies of 96.89 ± 0.6% and 100% for glycerol oxidation and HO production, respectively, with high stability for 25 h. Our results indicate that unassisted and stable PEC HO production is feasible with glycerol valorization using the α-FeO photoanode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c05136 | DOI Listing |
PEC Innov
December 2025
Institute for General Practice and Palliative Care, Hannover Medical School, Germany.
Background: In healthcare education, virtual reality (VR), simulating real-world situations, is emerging as a tool to improve communication skills, particularly in sensitive scenarios involving patients and caregivers. While promising, VR-based education also poses challenges such as avatar realism, cognitive load, and the need for pedagogical grounding.
Objective: This protocol paper presents the VR-TALKS project, which aims to develop, apply, and evaluate VR scenarios designed to teach healthcare students communication skills in serious illness scenarios.
RSC Adv
August 2025
King Abdulaziz City for Science and Technology (KACST), Hydrogen Technologies Institute Saudi Arabia
This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.
View Article and Find Full Text PDFNano Lett
September 2025
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
Multijunction photoelectrodes, which generate active photocarriers with sufficient energy to drive unassisted solar-fuel conversion, represent a promising avenue for sustainable energy applications. However, achieving controllable p/n-type doping and high-quality growth remains a challenge for most emerging metal oxide semiconductors. In this study, we demonstrate the creation of in-plane ferroelectric p/n homojunction superstructures in BiFeO (BFO) films, enabling bias-free photoelectrochemical (PEC) reactions.
View Article and Find Full Text PDFTalanta
August 2025
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou, 5
Tetracycline (TC) is a common antibiotic with broad antibacterial activity, yet its excessive abuse will leave antibiotic residues in animal-derived food, posing some threats to human health. Therefore, developing a simple and effective technology for TC trace analysis is immediately important for food safety. Herein, the sensitive PEC aptasensor within Z-scheme heterojunction, based on Bi/BiMoO and P-doped ultrathin porous g-CN (PCN), was constructed by elemental doping strategy, hydrothermal method and surface plasmon resonance (SPR) effect.
View Article and Find Full Text PDFMedComm (2020)
September 2025
Jiangsu Provincial Key Laboratory of Critical Care Medicine. Department of Critical Care Medicine Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu China.
Acute respiratory distress syndrome (ARDS) is a life-threatening condition affecting millions of people worldwide. The severity of ARDS is associated with the dysfunction of pulmonary endothelial cells (PECs). Metabolic reprogramming is characterized by enhanced glycolysis and lactate accumulation, which play a critical role in this process.
View Article and Find Full Text PDF