98%
921
2 minutes
20
Gibberellins (GAs) are major regulators of developmental and growth processes in plants. Using the degradation-based signaling mechanism of GAs, we have built transcriptional regulator (DELLA)-based, genetically encoded ratiometric biosensors as proxies for hormone quantification at high temporal resolution and sensitivity that allow dynamic, rapid and simple analysis in a plant cell system, i.e. Arabidopsis protoplasts. These ratiometric biosensors incorporate a DELLA protein as a degradation target fused to a firefly luciferase connected via a 2A peptide to a renilla luciferase as a co-expressed normalization element. We have implemented these biosensors for all five Arabidopsis DELLA proteins, GA-INSENSITIVE, GAI; REPRESSOR-of-ga1-3, RGA; RGA-like1, RGL1; RGL2 and RGL3, by applying a modular design. The sensors are highly sensitive (in the low pm range), specific and dynamic. As a proof of concept, we have tested the applicability in three domains: the study of substrate specificity and activity of putative GA-oxidases, the characterization of GA transporters, and the use as a discrimination platform coupled to a GA agonists' chemical screening. This work demonstrates the development of a genetically encoded quantitative biosensor complementary to existing tools that allow the visualization of GA in planta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16725 | DOI Listing |
Mitochondrial DNA A DNA Mapp Seq Anal
September 2025
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
Hibernation is an elaborate response strategy employed by numerous mammals to survive in cold conditions that involves active suppression of metabolism. Despite the role of mitochondria as energy metabolism centers during hibernation, the adaptive and evolutionary mechanisms of mitochondrial genes in hibernating animals, like hedgehogs in eulipotyphlan species, are not yet fully understood. In this study, we sequenced and assembled mitochondrial genomes of the hibernating four-toed hedgehog () and the non-hibernating Asian house shrew ().
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo 13083-862, Brazil.
Violacein exhibits antitumor activity, indicating potential for future clinical application. However, an efficient delivery system is required for the clinical use of this hydrophobic compound. Effective delivery systems can enhance the solubility and bioavailability of hydrophobic compounds like violacein, facilitating its clinical application for antitumor therapy.
View Article and Find Full Text PDFHGG Adv
September 2025
Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany; Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany. Electronic address:
Cystic kidney disease and related ciliopathies are caused by pathogenic variants in genes that commonly result in ciliary dysfunction. For a substantial number of individuals affected by those cilia-related diseases, the causative gene still remains unknown. Using massively parallel sequencing, we here identified a pathogenic bi-allelic variant in the gene encoding PALS1-Associated Tight Junction Protein (PATJ; also known as Inactivation-No-Afterpotential D-Like, INADL) in an individual with ciliopathy.
View Article and Find Full Text PDFAsthma is a chronic respiratory disorder characterized by airway inflammation, hyperresponsiveness, and reversible airflow obstruction. Despite therapeutic strategies, asthma remains inadequately controlled in many patients. Genetic predisposition plays a significant role in asthma pathogenesis, and the Proteinase-Activated Receptor 2 (PAR-2), encoded by the F2RL1 gene, has been associated with asthma.
View Article and Find Full Text PDFMycoses
September 2025
Grupo Infección e Inmunidad, Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia.
Background: Malassezia genus includes lipodependent commensal yeasts of humans and animals' skin and mucous membranes. It can cause dermatological pathologies, and azoles are mainly used for treatment. However, in vitro susceptibility testing has shown decreased sensitivity to these antifungals.
View Article and Find Full Text PDF