98%
921
2 minutes
20
It is largely documented that neurodegenerative diseases can be effectively treated only if early diagnosed. In this context, the structural changes of some biomolecules such as Tau, seem to play a key role in neurodegeneration mechanism becoming eligible targets for an early diagnosis. Post-translational modifications are responsible to drive the Tau protein towards a transition phase from a native disorder conformation into a preaggregation state, which then straight recruits the final fibrillization process. Here, we show for the first time the detection of pre-aggregated Tau in artificial urine at femto-molar level, through the concentration effect of the pyro-electrohydrodynamic jet (p-jet) technique. An excellent linear calibration curve is demonstrated at the femto-molar level with a limit of detection (LOD) of 130 fM. Moreover, for the first time we show here the structure stability of the protein after p-jet application through a deep spectroscopic investigation. Thanks to the small volumes required and the relatively compact and cost-effective characteristics, this technique represents an innovative breakthrough in monitoring the early stage associated to neurodegeneration syndromes in different scenarios of point of care (POC) and such as for example in long-term human space exploration missions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116234 | DOI Listing |
Anal Chim Acta
November 2024
University of Naples Federico II, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, I-80125, Napoli, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy. Electronic
Background: Pyro-electrohydrodynamic jetting (p-jet) has emerged recently as a promising technique for biosensing applications, through the concentration of highly diluted biomolecules in fluorescent spots at microscale. However, a great challenge still remains in optimizing the binding strategy for the sensing interface, enabling the detection of low abundance proteins through immunofluorescence protocols. Indeed, the surface of reaction can be functionalized with different chemical groups able to bind the target molecule with a strong interaction, prior to the p-jet spots decreasing the possibility to lose sensitivity after the common rinsing steps.
View Article and Find Full Text PDFBiosens Bioelectron
June 2024
Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale (DICMaPI), Università Degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125, Naples, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA,
It is largely documented that neurodegenerative diseases can be effectively treated only if early diagnosed. In this context, the structural changes of some biomolecules such as Tau, seem to play a key role in neurodegeneration mechanism becoming eligible targets for an early diagnosis. Post-translational modifications are responsible to drive the Tau protein towards a transition phase from a native disorder conformation into a preaggregation state, which then straight recruits the final fibrillization process.
View Article and Find Full Text PDFSensors (Basel)
June 2020
School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy.
The demand for sensors capable of measuring low-abundant collagen in human fluids has highly increased in recent years. Indeed, collagen is expected to be a biomarker for chronic diseases and could monitor their progression. Here we show detection of highly diluted samples of collagen at picogram level thanks to an innovative pyro-electrohydrodynamic jet (p-jet) system.
View Article and Find Full Text PDF