98%
921
2 minutes
20
In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2024.03.002 | DOI Listing |
J Neurooncol
September 2025
Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.
View Article and Find Full Text PDFApoptosis
September 2025
The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou, 646000, China.
Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes mellitus, characterized by pathological changes such as cardiomyocyte hypertrophy, necrosis, and myocardial fibrosis, which can ultimately lead to heart failure. However, its underlying mechanisms remain incompletely understood, limiting the development of effective therapeutic approaches. In recent years, the critical roles of oxidative stress and ferroptosis in the pathogenesis of DCM have attracted increasing attention.
View Article and Find Full Text PDFFASEB J
September 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.
View Article and Find Full Text PDFKaohsiung J Med Sci
September 2025
Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
Rosuvastatin (RVS) is an HMG-CoA reductase inhibitor with lipid-lowering properties. This study aims to investigate the role of RVS in plaque formation in atherosclerosis (AS) and its functional mechanism. ApoE mice were fed a high-fat diet to generate a mouse model of AS.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti, 85, Bologna 40129, Italy.
Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.
View Article and Find Full Text PDF