Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: Lumbar disk degeneration is a common condition contributing significantly to back pain. The objective of the study was to evaluate the potential of dual-energy CT (DECT)-derived collagen maps for the assessment of lumbar disk degeneration.

Patients And Methods: We conducted a retrospective analysis of 127 patients who underwent dual-source DECT and MRI of the lumbar spine between 07/2019 and 10/2022. The level of lumbar disk degeneration was categorized by three radiologists as follows: no/mild (Pfirrmann 1&2), moderate (Pfirrmann 3&4), and severe (Pfirrmann 5). Recall (sensitivity) and accuracy of DECT collagen maps were calculated. Intraclass correlation coefficient (ICC) was used to evaluate inter-reader reliability. Subjective evaluations were performed using 5-point Likert scales for diagnostic confidence and image quality.

Results: We evaluated a total of 762 intervertebral disks from 127 patients (median age, 69.7 (range, 23.0-93.7), female, 56). MRI identified 230 non/mildly degenerated disks (30.2%), 484 moderately degenerated disks (63.5%), and 48 severely degenerated disks (6.3%). DECT collagen maps yielded an overall accuracy of 85.5% (1955/2286). Recall (sensitivity) was 79.3% (547/690) for the detection of no/mild lumbar disk degeneration, 88.7% (1288/1452) for the detection of moderate disk degeneration, and 83.3% (120/144) for the detection of severe disk degeneration (ICC=0.9). Subjective evaluations of DECT collagen maps showed high diagnostic confidence (median 4) and good image quality (median 4).

Conclusion: The use of DECT collagen maps to distinguish different stages of lumbar disk degeneration may have clinical significance in the early diagnosis of disk-related pathologies in patients with contraindications for MRI or in cases of unavailability of MRI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.02.036DOI Listing

Publication Analysis

Top Keywords

disk degeneration
28
collagen maps
24
lumbar disk
20
dect collagen
16
degenerated disks
12
potential dual-energy
8
maps assessment
8
disk
8
lumbar spine
8
127 patients
8

Similar Publications

Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.

View Article and Find Full Text PDF

Cell and Hydrogel-Integrated Therapies for Intervertebral Disc Regeneration.

Adv Healthc Mater

September 2025

Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.

Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a prevalent spinal condition frequently associated with pain and motor impairment, imposing a substantial burden on quality of life. Despite extensive investigations into the genetic predisposition to IDD, the precise pathogenic genes and molecular pathways involved remain inadequately characterized, underscoring the need for continued research to clarify its genetic underpinnings.

Methods: This study leveraged IDD data from the FinnGen R12 cohort and integrated expression quantitative trait loci data across 49 tissues from the Genotype-Tissue Expression version 8 database to perform a cross-tissue transcriptome-wide association study (TWAS).

View Article and Find Full Text PDF

Lower back pain caused by intervertebral disk degeneration (IDD) is a common problem among middle-aged and older adults. We aimed to identify novel diagnostic biomarkers of IDD and analyze the potential association between key genes and immune cell infiltration. We screened differentially expressed genes (DEGs) related to IDD and gene sets associated with mitochondrial energy metabolism using the Gene Expression Omnibus and GeneCards databases, respectively.

View Article and Find Full Text PDF

Lycium barbarum alleviates oxidative stress-induced ferroptosis and enhances mitophagy in intervertebral disc degeneration.

Cell Signal

September 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Molecular Pharmacology Research Center, School of Pharmaceutical Sciences; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China. Electronic address:

Lycium barbarum is a traditional Chinese medicine that has been demonstrated to exhibit a wide variety of biological functions, such as antioxidation, neuroprotection, and immune modulation. The therapeutic effect of Lycium barbarum on intervertebral disc degeneration (IVDD) has not been conclusively established. In our study, we investigated the mechanisms of Lycium barbarum extract (LBE) using Network pharmacology and bioinformatic analyses.

View Article and Find Full Text PDF