98%
921
2 minutes
20
Single-molecule localization microscopy (SMLM) emerges as a powerful approach for super-resolution imaging that provides unprecedented resolution at the nanometer length scale. However, the development of appropriate probes with specific photophysical traits and characteristics is crucial for this approach. This study demonstrates two different fluorescent carbon dots (CDs) derived from the same molecular precursor─one emitting in red and the other in green─as a SMLM-based super-resolution imaging probe for different applications with an average localization precision of 20 nm and a resolution of 60 nm. Both the CDs exhibit spontaneous blinking with high photon count and low duty cycle but with different blinking cycles. The red emissive CDs with a lower blinking cycle are ideal for quantitative analysis, whereas green emissive CDs with a higher blinking cycle are ideal for high-resolution imaging. We show that the difference in blinking features is linked to their chemical compositions, and the presence of much denser trap states in red emitting CDs is responsible for the reduction of its blinking cycle. This study shows that CDs can be designed as a potential probe for SMLM-based super-resolution imaging for diverse bioimaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c01609 | DOI Listing |
Front Neuroinform
August 2025
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Introduction: The advent of super-resolution microscopy revealed the membrane-associated periodic skeleton (MPS), a specialized neuronal cytoskeletal structure composed of actin rings spaced 190 nm apart by two spectrin dimers. While numerous ion channels, cell adhesion molecules, and signaling proteins have been shown to associate with the MPS, tools for accurate and unbiased quantification of their periodic localization remain scarce.
Methods: We developed Napari-WaveBreaker (https://github.
Front Biosci (Landmark Ed)
August 2025
University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, 49330 Angers, France.
The bioenergetic machinery of the cell is protected and structured within two layers of mitochondrial membranes. The mitochondrial inner membrane is extremely rich in proteins, including respiratory chain complexes, substrate transport proteins, ion exchangers, and structural fusion proteins. These proteins participate directly or indirectly in shaping the membrane's curvature and facilitating its folding, as well as promoting the formation of nanotubes, and proton-rich pockets known as cristae.
View Article and Find Full Text PDFMethods Appl Fluoresc
September 2025
Department of Biotechnology and Biophysics, University of Würzburg, Department of Biotechnology & Biophysics, Wuerzburg University, Am Hubland, Wuerzburg, other, 97074, GERMANY.
Super-resolution microscopy (SRM) has revolutionized fluorescence imaging enabling insights into the molecular organization of cells that were previously unconceivable. Latest developments now allow the visualization of individual molecules with nanometer precision and imaging with molecular resolution. However, translating these achievements to imaging under physiological conditions in cells remains challenging.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China.
Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.
View Article and Find Full Text PDFPhotochem Photobiol Sci
September 2025
Faculity of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.
In recent years, fluorescence-switchable molecules have garnered significant attention as fluorescent dyes for super-resolution fluorescence microscopy, which is increasingly demanded in the field of biochemical imaging. Among such molecules, diarylethene-S,S,S',S'-tetraoxide derivatives have proven particularly promising due to their ability to achieve high contrast fluorescence switching. Diarylethenes incorporating perfluorocyclopentene as the ethene bridge have become the standard scaffold due to their excellent fatigue resistance and thermal stability.
View Article and Find Full Text PDF