Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objectives: Few studies have used real-world patient data to compare overall treatment patterns and survival outcomes for recurrent glioblastoma (rGBM). This study aimed to evaluate postprogression survival (PPS) according to the treatment strategy for rGBM by incorporating biomarker analysis.

Methods: We assessed 468 adult patients with rGBM who underwent standard temozolomide-based chemoradiation. The impact of predictors on PPS was evaluated in patients with isocitrate dehydrogenase wild-type rGBM (n = 439) using survival probability analysis. We identified patients who would benefit from reirradiation (re-RT) during the first progression.

Results: Median PPS was 3.4, 13.8, 6.6, and 10.0 months in the best supportive care (n = 82), surgery (with/without adjuvant therapy, n = 112), chemotherapy alone (n = 170), and re-RT (with/without chemotherapy, n = 75) groups, respectively. After propensity score matching analysis of the cohort, both the surgery and re-RT groups had a significantly better PPS than the chemotherapy-only group; however, no significant difference was observed in PPS between the surgery and re-RT groups. In the surgery subgroup, surgery with chemotherapy ( P = .024) and surgery with radio(chemo)therapy ( P = .039) showed significantly improved PPS compared with surgery alone. In the no-surgery subgroup, radio(chemo)therapy showed significantly improved PPS compared with chemotherapy alone ( P = .047). Homozygous deletion of cyclin-dependent kinase inhibitor 2A/B, along with other clinical factors (performance score and progression-free interval), was significantly associated with the re-RT survival benefit.

Conclusion: Surgery combined with radio(chemo)therapy resulted in the best survival outcomes for rGBM. re-RT should also be considered for patients with rGBM at first recurrence. Furthermore, this study identified a specific genetic biomarker and clinical factors that may enhance the survival benefit of re-RT.

Download full-text PDF

Source
http://dx.doi.org/10.1227/neu.0000000000002903DOI Listing

Publication Analysis

Top Keywords

recurrent glioblastoma
8
survival outcomes
8
patients rgbm
8
surgery
8
surgery re-rt
8
re-rt groups
8
improved pps
8
pps compared
8
clinical factors
8
pps
7

Similar Publications

The multifunctional systems presented here introduce an innovative and deeply thought-out approach to the more effective and safer use of temozolomide (TMZ) in treating glioma. The developed hydrogel-based flakes were designed to address the issues of local GBL therapy, bacterial neuroinfections, and the bleeding control needed during tumor resection. The materials obtained comprise TMZ and vancomycin (VANC) loaded into cyclodextrin/polymeric capsules and embedded into gelatin/hyaluronic acid/chitosan-based hydrogel films cross-linked with genipin.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.

View Article and Find Full Text PDF

More than a third of patients with glioblastoma experience tumor progression during adjuvant therapy. In this study, we performed a high-throughput drug repurposing screen of FDA-approved agents capable of crossing the blood-brain barrier in order to find agents to counteract acquired or inherent glioma cell resistance to temozolomide-associated cytotoxicity. We identified the cholesterol processing inhibitor, lomitapide, as a potential chemosensitizer in glioblastoma.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

Preventing Glioblastoma Relapse by Igniting Innate Immunity through Mitochondrial Stress in the Surgical Cavity.

Adv Mater

September 2025

Department of Neurosurgery, Qilu Hospital and Shandong Key Laboratory of Brain Health and Function Remodeling, Institute of Brain and Brain-Inspired Science, Jinan Microecological Biomedicine Shandong Laboratory, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong,

Innate immunity is crucial in orchestrating the brain immune response, however, glioblastoma multiforme (GBM) has evolved sophisticated mechanisms to evade innate immune surveillance, posing significant challenges for current immunotherapies. Here, a therapeutic strategy is reported that aims at reactivating innate immune responses in GBM via targeted induction of mitochondrial stress, thereby enhancing tumor immunogenicity. Specifically, innate immune-stimulating nanoparticles (INSTNA) are developed, encapsulating positively charged iridium-based complexes (Ir-mito) and small interfering RNA against Methylation-Controlled J protein (si-MCJ) to attenuate mitochondrial respiration.

View Article and Find Full Text PDF