Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To demonstrate the suitability of optically stimulated luminescence detectors (OSLDs) for accurate simultaneous measurement of the absolute point dose and dose-weighted linear energy transfer (LET) in an anthropomorphic phantom for experimental validation of daily adaptive proton therapy.

Methods: A clinically realistic intensity-modulated proton therapy (IMPT) treatment plan was created based on a CT of an anthropomorphic head-and-neck phantom made of tissue-equivalent material. The IMPT plan was optimized with three fields to deliver a uniform dose to the target volume covering the OSLDs. Different scenarios representing inter-fractional anatomical changes were created by modifying the phantom. An online adaptive proton therapy workflow was used to recover the daily dose distribution and account for the applied geometry changes. To validate the adaptive workflow, measurements were performed by irradiating AlO:C OSLDs inside the phantom. In addition to the measurements, retrospective Monte Carlo simulations were performed to compare the absolute dose and dose-averaged LET (LET) delivered to the OSLDs.

Results: The online adaptive proton therapy workflow was shown to recover significant degradation in dose conformity resulting from large anatomical and positioning deviations from the reference plan. The Monte Carlo simulations were in close agreement with the OSLD measurements, with an average relative error of 1.4% for doses and 3.2% for LET. The use of OSLDs for LET determination allowed for a correction for the ionization quenched response.

Conclusion: The OSLDs appear to be an excellent detector for simultaneously assessing dose and LET distributions in proton irradiation of an anthropomorphic phantom. The OSLDs can be cut to almost any size and shape, making them ideal for in-phantom measurements to probe the radiation quality and dose in a predefined region of interest. Although we have presented the results obtained in the experimental validation of an adaptive proton therapy workflow, the same approach can be generalized and used for a variety of clinical innovations and workflow developments that require accurate assessment of point dose and/or average LET.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951997PMC
http://dx.doi.org/10.3389/fonc.2023.1333039DOI Listing

Publication Analysis

Top Keywords

adaptive proton
20
proton therapy
20
therapy workflow
16
point dose
12
dose
9
optically stimulated
8
stimulated luminescence
8
simultaneous measurement
8
dose dose-weighted
8
anthropomorphic phantom
8

Similar Publications

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

The design of multidentate ligands incorporating both hard and soft donors is of fundamental interest and importance in coordination chemistry. Here, we report a novel class of tetradentate dianionic bisphenolate-bisphosphine (PO) ligands featuring hybrid hard (phenolate) and soft (phosphine) donor atoms. Titanium(IV) and titanium(III) chloride complexes of the PO ligands were synthesized and characterized by X-ray crystallography, NMR spectroscopy, solution magnetic susceptibility measurements (Evans method) and EPR spectroscopy, revealing distorted octahedral geometries and providing insight into coordination modes and spin states.

View Article and Find Full Text PDF

Purpose: Experimental patient-specific quality assurance (PSQA) in proton therapy is a labor-intensive process requiring physical access to treatment rooms, beam time, and significant human resources. With the increasing complexity of treatment plans and the implementation of adaptive therapy, the need for efficient alternatives is pressing. Simulation-based techniques are proposed as a replacement or enhancement for experimental ones.

View Article and Find Full Text PDF

Introduction: Microorganisms can have major impacts on the success of NASA's missions, including the integrity of materials, the protection of extraterrestrial environments, the reliability of scientific results, and maintenance of crew health. Robust cleaning and sterilization protocols for spacecraft and associated environments are currently in place in NASA facilities, but microbial contamination should be further controlled and its impact on NASA's missions and science must be minimized. To address this, air and surfaces across cleanrooms and uncontrolled spaces at the Marshall Space Flight Center were sampled and microbial burden and diversity were analyzed.

View Article and Find Full Text PDF

Primary bone tumours remain among the most challenging indications in radiation oncology-not because of anatomical size or distribution, but because curative intent demands ablative dosing alongside stringent normal-tissue preservation. Over the past decade, the therapeutic landscape has shifted markedly. Proton and carbon-ion centres now report durable local control with acceptable late toxicity in unresectable sarcomas.

View Article and Find Full Text PDF