Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Exposure to ambient ozone pollution causes health loss and even death, and both are the main risk factors for the disease burden worldwide. We comprehensively evaluated the ozone pollution-related disease burden.
Methods: First, numbers and age-standardized rates of deaths and disability-adjusted life years (DALYs) were assessed globally and by sub-types in 2019. Furthermore, the temporal trend of the disease burden was explored by the linear regression model from 1990 to 2019. The cluster analysis was used to evaluate the changing pattern of related disease burden across Global Burden of Disease Study (GBD) regions. Finally, the age-period-cohort (APC) model and the Bayesian age-period-cohort (BAPC) model were used to predict the future disease burden in the next 25 years.
Result: Exposure to ozone pollution contributed to 365,222 deaths and 6,210,145 DALYs globally in 2019, which accounted for 0.65 % of deaths globally and 0.24 % of DALYs globally. The disease burden was consistently increasing with age. Males were high-risk populations and low-middle socio-demographic index (SDI) regions were high-risk areas. The disease burden of ozone pollution varied considerably across the GBD regions and the countries. In 2019, the number of deaths and DALYs cases increased by 76.11 % and 56.37 %, respectively compared to those in 1990. The predicted results showed that the number of deaths cases and DALYs cases for both genders would still increase from 2020 to 2044.
Conclusion: In conclusion, ambient ozone pollution has threatened public health globally. More proactive and effective strategic measures should be developed after considering global-specific circumstances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171739 | DOI Listing |