Nanoparticle Size Distribution and Stability Assessment Using Asymmetric-Flow Field-Flow Fractionation.

Methods Mol Biol

Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanomaterials are inherently polydisperse. Traditional techniques, such as the widely used batch-mode dynamic light-scattering (DLS) analysis, are not ideal nor thoroughly descriptive enough to define the full complexity of these materials. Asymmetric-flow field-flow fractionation (AF4) with various in-line detectors, such as ultraviolet-visible (UV-vis), multi-angle light scattering (MALS), refractive index (RI), and DLS, is an alternative technique that can provide flow-mode analysis of not only size distribution but also shape, drug release/stability, and protein binding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3786-9_2DOI Listing

Publication Analysis

Top Keywords

size distribution
8
asymmetric-flow field-flow
8
field-flow fractionation
8
nanoparticle size
4
distribution stability
4
stability assessment
4
assessment asymmetric-flow
4
fractionation nanomaterials
4
nanomaterials inherently
4
inherently polydisperse
4

Similar Publications

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

Drug Delivery and Binding in a Tissue with Irregularly Shaped Binding Regions.

Pharm Res

September 2025

Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.

Objective: A fundamental understanding of drug diffusion and binding processes is critical for the design and optimization of a wide variety of drug delivery devices. Most of the past literature assume binding to occur uniformly throughout the tissue, or, at best, in specific layers of a multilayer tissue. However, in many realistic scenarios, such as in cancer-targeting drugs, drug binding occurs in discrete irregularly shaped regions.

View Article and Find Full Text PDF

The tomato russet mite, Aculops lycopersici (Tryon), is a key pest of commercially grown tomatoes worldwide. Due to its minute size, its detection is often not timely for effective control. In this study, the approach of limiting A.

View Article and Find Full Text PDF

The chimpanzee adenovirus-vectored vaccine developed by the University of Oxford (ChAdOx1 nCoV-19) showed good stability when stored in refrigerator. However, the vaccine manufacturer prefers its transportation in frozen condition. Data regarding the stability of the vaccine after exposure to repeated freezing processes have not been explored yet.

View Article and Find Full Text PDF

Submicron metal-bearing aerosols from an industrial hub of the North China Plain.

J Hazard Mater

September 2025

Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan. Electronic address:

Particulate matter emitted from heavy industries is a major source of atmospheric metals in the North China Plain (NCP). In this study, submicron particles (0.1-1.

View Article and Find Full Text PDF