A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep Learning-based Approach for Brainstem and Ventricular MR Planimetry: Application in Patients with Progressive Supranuclear Palsy. | LitMetric

Deep Learning-based Approach for Brainstem and Ventricular MR Planimetry: Application in Patients with Progressive Supranuclear Palsy.

Radiol Artif Intell

From the Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, 73039 Tricase, Italy (S.N., M.F., B.T., A.G., V.G., D.U., G.L.); Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bar

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose To develop a fast and fully automated deep learning (DL)-based method for the MRI planimetric segmentation and measurement of the brainstem and ventricular structures most affected in patients with progressive supranuclear palsy (PSP). Materials and Methods In this retrospective study, T1-weighted MR images in healthy controls ( = 84) were used to train DL models for segmenting the midbrain, pons, middle cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), third ventricle, and frontal horns (FHs). Internal, external, and clinical test datasets ( = 305) were used to assess segmentation model reliability. DL masks from test datasets were used to automatically extract midbrain and pons areas and the width of MCP, SCP, third ventricle, and FHs. Automated measurements were compared with those manually performed by an expert radiologist. Finally, these measures were combined to calculate the midbrain to pons area ratio, MR parkinsonism index (MRPI), and MRPI 2.0, which were used to differentiate patients with PSP ( = 71) from those with Parkinson disease (PD) ( = 129). Results Dice coefficients above 0.85 were found for all brain regions when comparing manual and DL-based segmentations. A strong correlation was observed between automated and manual measurements (Spearman ρ > 0.80, < .001). DL-based measurements showed excellent performance in differentiating patients with PSP from those with PD, with an area under the receiver operating characteristic curve above 0.92. Conclusion The automated approach successfully segmented and measured the brainstem and ventricular structures. DL-based models may represent a useful approach to support the diagnosis of PSP and potentially other conditions associated with brainstem and ventricular alterations. MR Imaging, Brain/Brain Stem, Segmentation, Quantification, Diagnosis, Convolutional Neural Network © RSNA, 2024 See also the commentary by Mohajer in this issue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140505PMC
http://dx.doi.org/10.1148/ryai.230151DOI Listing

Publication Analysis

Top Keywords

brainstem ventricular
16
midbrain pons
12
patients progressive
8
progressive supranuclear
8
supranuclear palsy
8
ventricular structures
8
cerebellar peduncle
8
scp third
8
third ventricle
8
test datasets
8

Similar Publications