Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Medical image segmentation is a critical task in computer vision because of facilitating precise identification of regions of interest in medical images. This task plays an important role in disease diagnosis and treatment planning. In recent years, deep learning algorithms have exhibited remarkable performance in this domain. However, it is important to note that there are still unresolved issues, including challenges related to class imbalance and achieving higher levels of accuracy. Considering the challenges, we propose a novel approach to the semantic segmentation of medical images. In this study, a new sampling method to handle class imbalance in the medical datasets is proposed that ensures a comprehensive understanding of both abnormal tissues and background characteristics. Additionally, we propose a novel loss function inspired by exponential loss, which operates at the pixel level. To enhance segmentation performance further, we present an ensemble model comprising two UNet models with ResNet backbone. The initial model is trained on the primary dataset, while the second model is trained on the dataset obtained through our sampling method. The predictions of both models are combined using an ensemble model. We have assessed the effectiveness of our approach using three publicly available datasets: Kvasir-SEG, FLAIR MRI Low-Grade Glioma (LGG), and ISIC 2018 datasets. In our evaluation, we have compared the performance of our loss function against four different loss functions. Furthermore, we have showcased the excellence of our approach by comparing it with various state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108305DOI Listing

Publication Analysis

Top Keywords

sampling method
12
loss function
12
medical image
8
image segmentation
8
medical images
8
class imbalance
8
propose novel
8
ensemble model
8
model trained
8
medical
5

Similar Publications

Perceived stress and compulsive buying among Saudi adults: the mediation role of rumination.

BMC Psychol

September 2025

Department of Psychology, Faculty of Arts and Humanities, King Abdulaziz University, Jeddah, Saudi Arabia.

Objectives/background: Prior studies have claimed that people engage in compulsive buying in an attempt to deal with stress. Nonetheless, not every stressed person engages in compulsive buying. It is therefore important to investigate the cognitive mechanisms underlying such behavior.

View Article and Find Full Text PDF

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF

Background: Physical inactivity, impaired physical mobility and poor mental health are common in the older population and increasing as the population ages. We examined the relationships between physical activity, physical mobility, and mental health in the general population of older adults.

Methods: The study is based on 12 959 men and women aged 70 years or older answering a survey questionnaire sent to a random population sample in Mid-Sweden in 2022 (response rate 66%).

View Article and Find Full Text PDF

Background: Avenanthramides (AVAs) and Avenacosides (AVEs) are unique to oats (Avena Sativa) and may serve as biomarkers of oat intake. However, information regarding their validity as food intake biomarkers is missing. We aimed to investigate critical validation parameters such as half-lives, dose-response, matrix effects, relative bioavailability under single dose, and in relation to the abundance of Feacalibacterium prausnitzii, and under repeated dosing, to understand the potential applications of AVAs and AVEs as biomarkers of oat intake.

View Article and Find Full Text PDF

Background: This study examines trends in delta-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) positivity rates in pre-employment urine drug screenings at a single university-based hospital occupational medicine clinic from 2017 to 2022, following California's recreational cannabis legalization in 2016, with sales beginning officially on January 1, 2018.

Methods: Retrospective analysis of 21,546 de-identified urine drug screenings from 2017 to 2022 was conducted. Initial screening used instant urine drug immunoassays (50 ng/mL cutoff for THC-COOH), followed by confirmatory gas chromatography-mass spectrometry (15 ng/mL cutoff).

View Article and Find Full Text PDF