Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rice is an essential but highly stress-susceptible crop, whose root system plays an important role in plant development and stress adaptation. The rice root system architecture is controlled by gene regulatory networks involving different phytohormones including auxin, jasmonate, and gibberellin. Gibberellin is generally known as a molecular clock that interacts with different pathways to regulate root meristem development. The exogenous treatment of rice plantlets with Gibberellin reduced the number of crown roots, whilst the exogenous jasmonic acid treatment enhanced them by involving a Germin-like protein OsGER4. Due to those opposite effects, this study aims to investigate the effect of Gibberellin on crown root development in the rice mutant of the plasmodesmal Germin-like protein OsGER4. Under exogenous gibberellin treatment, the number of crown roots significantly increased in osger4 mutant lines and decreased in the OsGER4 overexpressed lines. GUS staining showed that OsGER4 was strongly expressed in rice root systems, particularly crown and lateral roots under GA3 application. Specifically, OsGER4 was strongly expressed from the exodermis, epidermis, sclerenchyma to the endodermis layers of the crown root, along the vascular bundle and throughout LR primordia. The plasmodesmal protein OsGER4 is suggested to be involved in crown root development by maintaining hormone homeostasis, including Gibberillin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-024-01341-yDOI Listing

Publication Analysis

Top Keywords

crown root
16
protein osger4
16
root development
12
germin-like protein
12
gibberellin crown
8
root
8
plasmodesmal germin-like
8
osger4
8
root system
8
rice root
8

Similar Publications

Understanding recurrent injuries in the deciduous dentition and possible associated factors could help in the control and prevention of such episodes in children. The aim of the present study was to investigate the frequency of recurrent injuries in the deciduous dentition and associated factors. A retrospective cross-sectional study was conducted involving 517 children aged between six months and six years treated at the Clinic for Traumatic Dental Injuries in the Deciduous Dentition of the School of Dentistry of the Universidade Federal de Minas Gerais.

View Article and Find Full Text PDF

Finite Element Analysis of Endodontically Treated Mandibular Second Molars With Variable Root Morphologies: Endocrown vs. Post-And-Core Crown Restorations.

Aust Endod J

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

This study aimed to investigate the biomechanical impact of root canal anatomical variations and restoration techniques on endodontically treated mandibular second molars using finite element analysis. Five root morphologies were modelled: separated-rooted (S), fused-rooted with V-shaped (F-V), U-shaped (F-U) or Ω-shaped (F-Ω) radicular grooves and single-canal fused-rooted (F-O). Micro-CT scans were performed before and after endodontic instrumentation to generate the finite element models: intact teeth, post-and-core crowns with 2- to 3-mm ferrules and endocrowns with 3- to 4-mm pulp chamber extensions.

View Article and Find Full Text PDF

Purpose: This study aimed to compare the dimensional and positional deviations of additively manufactured removable dies fabricated using two bio-based resins and one conventional dental cast resin, while also evaluating these outcomes over a 4-week period.

Materials And Methods: A right mandibular first molar preparation on a typodont was scanned to digitally design removable dies and hollow partial arch casts. Based on a priori power analysis, a total of 30 dies (n = 10) and three hollow casts (n = 1) were fabricated using additive manufacturing (AM) from three different dental cast resins: DentaMODEL (DM), FotoDent bio-based model (CB), and soy-based resin (SB).

View Article and Find Full Text PDF

This study aimed to characterize gingival thickness (GT) and determine correlations with other local phenotypic features. CBCT scans from adult subjects involving the maxillary anterior teeth were obtained to assess buccal GT at different apicocoronal levels, periodontal supracrestal tissue height (STH), the distance (CEJ-BC) from the cementoenamel junction (CEJ) to the alveolar bone crest (BC), and buccolingual tooth dimensions. A total of 100 subjects and 600 maxillary anterior teeth comprised the study sample.

View Article and Find Full Text PDF

Objective: To evaluate the impact of occlusion type and artificial intelligence-based computer-aided design (CAD) software on the geometric accuracy and clinical quality of auto-generated anterior and posterior crown designs.

Methods: Five typodont models representing various occlusion types (normal, Class I anterior diastema, Class II division 1, Class II division 2, and Class III anterior crossbite occlusion) underwent crown preparation for the maxillary right central incisor and first molar. Ten sets of intraoral scans were obtained from each prepared model, and crown designs were automatically generated using two software programs: deep learning-based (DL; Dentbird) and conventional automated (CA; Auto Workflow, 3Shape) (n = 10).

View Article and Find Full Text PDF