Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The feature of abundant and environmentally friendly heavy atoms (HAs) like bromine to accelerate spin-forbidden transitions in organic molecules has been known for years. In combination with the easiness of incorporation, bromine derivatives of organic emitters showing thermally activated delayed fluorescence (TADF) emerge as a cheap and efficient solution for the slow reverse intersystem crossing (rISC) problem in such emitters and strong efficiency roll-off of all-organic light-emitting diodes (OLEDs). Here, we present a comprehensive photophysical study of a emitter reported previously and its hexabromo derivative showing a remarkable enhancement of rISC of up to 9 times and a short lifetime of delayed fluorescence of 2 μs. Analysis of the key molecular vibrations and TADF mechanism indicates almost compete blockage of the spin-flip transition between the charge-transfer states of different multiplicity CT → CT. In such a case, rISC as well as its enhancement by the HA is realized via the LE → CT transition, where LE is the triplet state localized on the same brominated phenoxazine donor involved in the formation of the CT state. Interestingly, the spin-orbit coupling (SOC) with two other LE states is negligible because they are localized on different donors and not involved in CT. We consider this as an example of an additional "localization" criterion that completes the well-known El Sayed rule on the different nature of states for nonzero SOC. The applicative potential of such a hexabromo emitter is tested in a "hyperfluorescent" system containing a red fluorescent dopant (tetraphenyldibenzoperiflanthene, DBP) as an acceptor of Förster resonance energy transfer, affording a narrow-band red-emitting system, with most of the emission in the submicrosecond domain. In fact, the fabricated red OLED devices show remarkable improvement of efficiency roll-off from 2-4 times depending on the luminance, mostly because of the increase of the rISC constant rate and the decrease of the overall delayed fluorescence lifetime thanks to the HA effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982931PMC
http://dx.doi.org/10.1021/acsami.3c19627DOI Listing

Publication Analysis

Top Keywords

delayed fluorescence
16
thermally activated
8
activated delayed
8
all-organic light-emitting
8
efficiency roll-off
8
application heavy-atom
4
heavy-atom submicrosecond
4
submicrosecond thermally
4
delayed
4
fluorescence
4

Similar Publications

Time-resolved data acquisition is crucial for compositional analysis using Laser-Induced Breakdown Spectroscopy (LIBS). It can be managed by adjusting the delay time and gate width of the spectrometer. This study describes the compositional analysis of molybdenum (Mo) ore utilizing charge coupled device (CCD) and intensified charge-coupled device (ICCD) based LIBS systems.

View Article and Find Full Text PDF

Pure-Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers with Discontinuous Fused Benzene Rings.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).

View Article and Find Full Text PDF

Symmetry Breaking Assisted Fast Reverse Intersystem Crossing for Efficient TADF Materials.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Reverse intersystem crossing (RISC) process is critical for thermally activated delayed fluorescence (TADF) materials to realize spin-flip of triplet excitons in organic light-emitting diodes (OLEDs), but the RISC processes of most TADF materials are not fast enough, undermining electroluminescence (EL) efficiency stability and operational lifetime. Herein, a symmetry breaking strategy to accelerate RISC processes is proposed. By designing asymmetric electron-withdrawing backbone consisting of benzonitrile and xanthone/thioxanthone groups, two new asymmetric TADF molecules, 4tCzCN-pXT and 4tCzCN-pTXT, with multiple 3,6-di-tert-butylcarbazole donors are successfully developed.

View Article and Find Full Text PDF

Incarcerated or threatened bowel obstruction with suspected intestinal ischemia requires prompt surgical intervention. This retrospective case series, involving 8 patients undergoing emergency laparotomy, evaluated the feasibility of combining indocyanine green (ICG) fluorescence and Doppler ultrasound for intraoperative bowel viability assessment. Indocyanine green was injected intravenously.

View Article and Find Full Text PDF

B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.

View Article and Find Full Text PDF