98%
921
2 minutes
20
This study focuses on a new type of fast responsive solid-state visual colorimetric sensor, custom engineered with dual-entwined porous polymer imbued with chromoionophoric 4-(sec-butyl)- 2-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)phenol (SMDP) probe for selective and ultra-sensitive colorimetric sensing of Cd(II). The polymer monolith, i.e., poly(aminostyrene-co-trimethylolpropanetrimethacrylate) denoted as poly(AMST-co-TRIM), is designed through a stoichiometric blending of monomer, crosslinker, and porogens leading to superior surface area, pore and adsorption properties for the voluminous incorporation of SMDP probe for target specific ion sensing. The porosity, surface and structural characteristics of the poly(AMST-co-TRIM)monolith and poly(AMST-co-TRIM)SMDP sensor are investigated using p-XRD, XPS, TG-DTA, FT-IR, BET/BJH, FE-SEM, HR-TEM, EDAX, and SAED techniques. The poly(AMST-co-TRIM)SMDP sensor reveals a frozen geometrical orientation of SMDP molecules to bind selectively with Cd(II), forming stable charge-transfer complexes by exhibiting transitional visible color shifts from light yellow to dark green (λ 608 nm). The sensor imposes a linear response from 0-200 ppb, with quantification and detection limits of 0.95 and 0.28 ppb. The fabricated sensor material is cost-effective and versatile in its solid-state naked-eye sensing, with excellent reusability. The sensor performance has been verified using various environmentally contaminated water and commercial cigarette samples, with a recovery of ≥ 99.12% and an RSD of ≤ 1.95%, thus reflecting exceptional data reproducibility/reliability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133960 | DOI Listing |
Mikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFJ Assist Reprod Genet
September 2025
Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
Purpose: Accurate embryo selection is vital for the success of in vitro fertilization (IVF); however, existing morphological scoring methods are inherently subjective and fail to capture underlying molecular alterations. This study aimed to identify non-invasive molecular markers for embryo quality assessment by analyzing highly modified ribosomal small RNAs (rsRNAs) in embryo culture medium using ultra-sensitive sequencing and machine learning.
Methods: Ultra-sensitive Pandora sequencing was employed to profile rsRNAs in embryo culture medium.
Sci Bull (Beijing)
August 2025
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China. Electronic address:
Determining the number of photons in an incident light pulse at room temperature is the ultimate goal of photodetection. Herein, we report a plasmon-strain-coupled tens of photon level phototransistor by integrating monolayer MoS on top of Au nanowire (NW). Within this structure, Au NW can greatly enhance incident light intensity around MoS, and the large tensile strain can reduce the contact energy barrier between MoS and Au NW, so as to achieve efficient injection of plasmonic hot electrons into MoS.
View Article and Find Full Text PDFNat Commun
September 2025
London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
Wastewater-based epidemiology is emerging as a powerful early-warning public health surveillance tool. However, gold-standard PCR necessitates transporting samples to laboratories, with significant reporting delays (24-72 h), prompting growing interest in rapid, near-source tests for resource-limited settings. Research has focused on gold nanoparticle dipsticks, but these typically lack sensitivity in wastewater.
View Article and Find Full Text PDFVaccines (Basel)
August 2025
myNEO Therapeutics, 9000 Ghent, Belgium.
: Antigen-targeting immunotherapies hinge on the accurate identification of immunogenic epitopes that elicit robust T-cell responses. However, current computational approaches focus primarily on MHC binding affinity, leading to high false-positive rates and limiting the clinical utility of antigen selection methods. : We developed the neoIM (for "neoantigen immunogenicity") model, a first-in-class, high-precision immunogenicity prediction tool that overcomes these limitations by focusing exclusively on overall CD8 T-cell response rather than MHC binding.
View Article and Find Full Text PDF