98%
921
2 minutes
20
In recent decades, ecological niche models (ENMs) have been widely used to predict suitable habitats for species. However, for invasive organisms, the prediction accuracy is unclear. In this study, we employed the most widely used maximum entropy (MaxEnt) model and ensemble model (EM) Biomod2 and verified the practical effectiveness of the ENM in predicting the distribution areas of invasive insects based on the true occurrence of in China. The results showed that when only limited data of invasive areas were used, the two ENMs could not effectively predict the distribution of suitable habitats of , although the use of global data can greatly improve the prediction accuracy of ENMs. When analyzing the same data, Biomod2's prediction accuracy was significantly better than that of MaxEnt. For long-term predictions, the area of suitable habitat predicted by the ENMs was much greater than the occurrence area; for short-term predictions, the accuracy of the predicted area was significantly improved. Under the current conditions, the area of suitable habitat for in China is 118 × 10 km, of which 59.32% is moderately or highly suitable habitat. Future climate change could significantly increase the suitable habitat area of in China, and the predicted area of suitable habitats in all climate scenarios exceeded 355 × 10 km, accounting for 36.98% of the total land area in China. This study demonstrates the use of ENMs to study invasive insects and provides a reference for the management of in China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940052 | PMC |
http://dx.doi.org/10.1002/ece3.11159 | DOI Listing |
Med Vet Entomol
September 2025
Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, India.
The biting midges, Culicoides peregrinus Kieffer and Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae) are the most significant vector species of bluetongue virus (BTV) in the Oriental region, including India. Rearing of these vector species was cumbersome; previous researchers supplemented the rearing substrates primarily with cattle dung (the habitat), yeast and nutrient broth. Other investigations reiterated that an enriched milieu of live bacteria is required for the oviposition and developmental progression of the immatures as they failed to develop in sterile medium.
View Article and Find Full Text PDFUnderstanding the spatial distribution of rare species is fundamental to biodiversity conservation. The black-necked crane (), a flagship species of alpine wetlands and a first-class nationally protected species in China, serves as an important indicator for ecosystem health. Based on the had data and ecological environment data, this study used the Maximum Entropy model (MaxEnt) and Random Forest model (RF) to predict the suitable distribution area of the black-necked crane.
View Article and Find Full Text PDFInt Urol Nephrol
September 2025
Division of Nursing, Singapore General Hospital, Singapore, Singapore.
Objective: To explore healthcare professionals' perceptions on the implementation of home hemodialysis and self-assisted hemodialysis in Singapore and to identify the perceived barriers, facilitators, and actionable strategies for increasing uptake.
Methods: This is a qualitative explorative study based on semi-structured face-to-face interviews conducted with a multidisciplinary group of 12 healthcare professionals at an acute teaching hospital in Singapore. Thematic analysis was used for data analysis.
Mar Life Sci Technol
August 2025
Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.
Unlabelled: Biological invasions represent one of the main anthropogenic drivers of global change with a substantial impact on biodiversity. Traditional studies predict invasion risk based on the correlation between species' distribution and environmental factors, with little attention to the potential contribution of physiological factors. In this study, we incorporated temperature-dependent sex determination (TSD) and sex-ratio data into species distribution models (SDMs) to assess the current and future suitable habitats for the world's worst invasive reptile species, the pond slider turtle ().
View Article and Find Full Text PDFEcol Evol
September 2025
Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine Hokkaido University Sapporo Japan.
The king cobra (), the world's largest venomous snake, is a vulnerable species with an expanding distribution in Nepal. This study modeled its current climatically suitable habitat and predicted future changes (2050 and 2070) under the SSP2-4.5 climate change scenario.
View Article and Find Full Text PDF