98%
921
2 minutes
20
Tubulin C-terminal tail (CTT) is a disordered segment extended from each tubulin monomer of αβ tubulin heterodimers, the building blocks of microtubules. The tubulin CTT contributes to the cellular function of microtubules such as intracellular transportation by regulating their interaction with other proteins and cell shape regulation by controlling microtubule polymerization dynamics. Although the mechanical integrity of microtubules is crucial for their functions, the role of tubulin CTT on microtubule mechanical properties has remained elusive. In this work, we investigate the role of tubulin CTTs in regulating the mechanical properties of microtubules by estimating the persistence lengths and investigating the buckling behavior of microtubules with and without CTT. We find that microtubules with intact CTTs exhibit twice the rigidity of microtubules lacking tubulin CTTs. Our study will widen the scope of altering microtubule mechanical properties for its application in nano bio-devices and lead to novel therapeutic approaches for neurodegenerative diseases with altered microtubule properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2024.149761 | DOI Listing |
Biomaterials
August 2025
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. Electronic address:
Wearable bioelectronics have transformed modern biomedical applications by enabling seamless integration with biological tissues, providing continuous, comprehensive, and personalized healthcare. Skin cancer, particularly melanoma, poses a significant clinical challenge due to its high metastatic potential and associated mortality. Traditional diagnostic approaches face limitations in accuracy, accessibility, and reproducibility, while existing treatments are often constrained by systemic toxicity and therapeutic resistance.
View Article and Find Full Text PDFPLoS One
September 2025
Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.
View Article and Find Full Text PDFPLoS Biol
September 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).
View Article and Find Full Text PDFJ Drug Target
September 2025
Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Chronic constriction injury (CCI) of the sciatic nerve induces neuropathic pain, inflammation, oxidative stress, and neurodegenerative changes, impairing sensory and emotional function. While curcumin is well recognized for its anti-inflammatory and neuroprotective properties, its therapeutic use is limited by poor bioavailability. Curcumin liposomal nanoparticles (CLNs) offer improved delivery and stability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453.
Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.
View Article and Find Full Text PDF