Host cell proteins in monoclonal antibody processing: Control, detection, and removal.

Biotechnol Prog

Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Host cell proteins (HCPs) are process-related impurities in a therapeutic protein expressed using cell culture technology. This review presents biopharmaceutical industry trends in terms of both HCPs in the bioprocessing of monoclonal antibodies (mAbs) and the capabilities for HCP clearance by downstream unit operations. A comprehensive assessment of currently implemented and emerging technologies in the manufacturing processes with extensive references was performed. Meta-analyses of published downstream data were conducted to identify trends. Improved analytical methods and understanding of "high-risk" HCPs lead to more robust manufacturing processes and higher-quality therapeutics. The trend of higher cell density cultures leads to both higher mAb expression and higher HCP levels. However, HCP levels can be significantly reduced with improvements in operations, resulting in similar concentrations of approx. 10 ppm HCPs. There are no differences in the performance of HCP clearance between recent enhanced downstream operations and traditional batch processing. This review includes best practices for developing improved processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.3448DOI Listing

Publication Analysis

Top Keywords

host cell
8
cell proteins
8
hcp clearance
8
manufacturing processes
8
hcp levels
8
proteins monoclonal
4
monoclonal antibody
4
antibody processing
4
processing control
4
control detection
4

Similar Publications

Age-related differences in donor selection priorities for allogeneic hematopoietic transplantation.

Haematologica

September 2025

Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan; Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke.

Patient age might influence donor selection priorities in allogeneic hematopoietic stem cell transplantation (allo-HCT), due to the differences in donor age, organ function, and resistance to graft-versus-host disease between younger and older patients. We compared the transplant outcomes among human leukocyte antigen (HLA)-matched related donors (M-RDs, n=4,106), HLA 1-antigen-mismatched related donors (1MM-RDs, n=592), HLA 2-3-antigen-mismatched related donors (23MM-RDs, n=882), HLA-matched unrelated donors (M-UDs, n=3,927), HLA 1-locus-mismatched unrelated donors (1MM-UDs, n=2,474), and unrelated cord blood units (U-CBs, n=5,867) between patients aged.

View Article and Find Full Text PDF

Degradation during production and delivery is a significant bottleneck in developing biomolecular therapies. Protein cages, formed by engineered variants of lumazine synthase, present an effective strategy for the microbial production and isolation of labile biomolecular therapies. Genetic fusion of the target polypeptide to a cage component protomer ensures its efficient encapsulation within the cage during production in host bacterial cells, thereby protecting it from degradation.

View Article and Find Full Text PDF

Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.

View Article and Find Full Text PDF

Parasitic infections of the central nervous system (CNS) represent a considerable health burden in low- and middle-income countries. During chronic disease, parasites modulate host immunity to ensure long-term persistence while limiting collateral tissue damage. A key feature of this immune remodeling is the progressive T-cell dysfunction that may culminate in T-cell exhaustion, characterized by increased expression of inhibitory receptors (TIM-3, LAG-3, KLRG1), checkpoint molecules (PD-1, PD-L1), suppressor of cytokine signaling-1 (SOCS1), and arginase-1.

View Article and Find Full Text PDF

Abnormal immune responses are common clinical features in septic patients. γδ T cells, as innate immune cells, play an important role in host defense, immune surveillance and homeostasis. However, the immune characteristics of γδ T cells in pediatric sepsis remains remain poorly understood.

View Article and Find Full Text PDF