98%
921
2 minutes
20
Background And Objectives: We previously found a substantial familial aggregation of healthy aging phenotypes, including exceptional memory (EM) in long-lived persons. In the current study, we aim to assess whether long-lived families with EM and without EM (non-EM) differ in systemic inflammation status and trajectory.
Methods: The current study included 4333 participants of the multi-center Long Life Family Study (LLFS). LLFS families were classified as EM (556 individuals from 28 families) or non-EM (3777 individuals from 416 families), with 2 or more offspring exhibiting exceptional memory performance (i.e. having baseline composite z-score representing immediate and delayed story memory being 1.5 SD above the mean in the nondemented offspring sample) considered as EM. Blood samples from baseline were used to measure inflammatory biomarkers including total white blood cell (WBC) and its subtypes (neutrophils, lymphocytes, monocytes) count, platelet count, high sensitivity C-reactive protein, and interleukin-6. Generalized linear models were used to examine cross-sectional differences in inflammatory biomarkers at baseline. In a sub-sample of 2227 participants (338 subjects from 24 EM families and 1889 from 328 non-EM families) with repeated measures of immune cell counts, we examined whether the rate of biomarker change differed between EM and non-EM families. All models were adjusted for family size, relatedness, age, sex, education, field center, APOE genotype, and body mass index.
Results: LLFS participants from EM families had a marginally higher monocyte count at baseline (b = 0.028, SE = 0.0110, p = 0.010) after adjusting for age, sex, education, and field site, particularly in men (p < 0.0001) but not in women (p = 0.493) (p-interaction = 0.003). Over time, monocyte counts increased (p < 0.0001) in both EM and non-EM families, while lymphocytes and platelet counts decreased over time in the non-EM families (p < 0.0001) but not in the EM families. After adjusting for multiple variables, there was no significant difference in biomarker change over time between the EM and non-EM families.
Discussion: Compared with non-EM families, EM families had significantly higher monocyte count at baseline but had similar change over time. Our study suggests that differences in monocyte counts may be a pathway through which EM emerges in some long-lived families, especially among men.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925922 | PMC |
http://dx.doi.org/10.1016/j.bbih.2024.100746 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Layered van der Waals (vdW) materials, characterized by their interlayer vdW gaps, offer exceptional tunability of magnetic properties via intercalation chemistry. A wide range of magnetic behaviors have been observed in nonmagnetic transition-metal dichalcogenides intercalated with magnetic atoms. Beyond the incorporation of magnetic ions, we propose the controlled alkali-ion intercalation of intrinsic vdW magnets as a strategy to probe and manipulate spin populations and exchange interactions within individual magnetic layers.
View Article and Find Full Text PDFAppl Neuropsychol Child
September 2025
Department of Psychology and Education of Exceptional Children, Faculty of Psychology and Educational Sciences, Allameh Tabataba'i University, Tehran, Iran.
Objective: This study aimed to evaluate the effectiveness of vestibular exercises in enhancing auditory memory and auditory discrimination in high-functioning children diagnosed with autism spectrum disorder (ASD).
Methods: Employing a quasi-experimental pretest-posttest design, the study recruited 20 children aged 6-8 years with confirmed diagnoses of high-functioning autism from psychology clinics in Tehran in 2024, using convenience sampling. Participants were randomly assigned to either an experimental group (n = 10), which underwent vestibular training, or a control group (n = 10) that received no intervention.
Nanotechnology
September 2025
Electrical Engineering, Indian Institute of Technology Jodhpur, IIT Jodhpur, Jodhpur, 342037, INDIA.
Due to their exceptional chemical stability and tunable chemical properties particularly the interlayer bonding, MXenes have emerged as promising switching layers in RRAM devices. This work presents the synthesis of nanosheets of a widely explored MXene (Ti3C2), and its application for demonstrating high performance flexible RRAM devices through solution processing, which is rarely demonstrated till date. The structural and morphological properties of Ti3C2 nanosheets were comprehensively investigated using various characterization techniques.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America.
Wurtzite nitride ferroelectric materials have emerged as promising candidates for next-generation memory applications, due to their exceptional polarization properties and compatibility with conventional semiconductor processing techniques. Here, we demonstrate the first successful areal scaling of aluminum scandium nitride (AlScN) ferroelectric diode (FeDiode) memory down to device diameter of 40 nm while maintaining an ON/OFF ratio of >60. Using a 20-nm-thick AlScN ferroelectric layer, we evaluate both metal-insulator-ferroelectric-metal (MIFM) and metal-ferroelectric-metal (MFM) architectures for scaled resistive memory devices.
View Article and Find Full Text PDF