Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The effects of climate change and the rapid growth of societies often lead to water scarcity and inadequate water quality, resulting in a significant number of diseases. The digitalization of infrastructure and the use of Digital Twins are presented as alternatives for optimizing resources and the necessary infrastructure in the water cycle. This paper presents a framework for the development of a Digital Twin platform for a wastewater treatment plant, based on a microservices architecture which optimized its design for edge computing implementation. The platform aims to optimize the operation and maintenance processes of the plant's systems, by employing machine learning techniques, process modeling and simulation, as well as leveraging the information contained in BIM models to support decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935207 | PMC |
http://dx.doi.org/10.3390/s24051568 | DOI Listing |