98%
921
2 minutes
20
Enterovirus 71 (EV71) is a neurotropic enterovirus associated with hand, foot, and mouth disease (HFMD) fatalities. In this study, we investigated the impact of EV71 on plasmacytoid dendritic cells (pDCs) and CD4 T cells. The results showed that pDCs were promptly activated, secreting interferon (IFN)-α and inducing CD4 T cell proliferation and differentiation during early EV71 infection. This initiated adaptive immune responses and promoted proinflammatory cytokine production by CD4 T cells. Over time, viral nucleic acids and proteins were synthesized in pDCs and CD4 T cells. Concurrently, the cholinergic anti-inflammatory pathway (CAP) was activated, exhibiting an anti-inflammatory role. With constant viral stimulation, pDCs and CD4 T cells showed reduced differentiation and cytokine secretion. Defects in pDCs were identified as a key factor in CD4 T cell tolerance. CAP had a more significant regulatory effect on CD4 T cells than on pDCs and was capable of inhibiting inflammation in these cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-024-05974-z | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFNat Immunol
September 2025
Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.
View Article and Find Full Text PDFJ Immunol
September 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Qidong-Fudan Innovative Institution of Medical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large quantities of subviral particles containing its surface antigen (HBsAg). T cells play a central role in controlling HBV infection but can also mediate liver injury and contribute to disease progression. However, the mechanisms that regulate T-cell responses to eliminate the virus without causing immunopathology during acute HBV infection remain poorly defined.
View Article and Find Full Text PDFAm J Transplant
September 2025
Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania
Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.
View Article and Find Full Text PDFJ Affect Disord
September 2025
Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, PR China. Electronic address:
Objective: Major depressive disorder (MDD) is among the most prevalent and debilitating mental health conditions worldwide. This study aims to investigate the bidirectional causal relationship between immune cells and MDD using Mendelian randomization (MR) analysis and determine whether metabolites mediate this relationship.
Methods: We compiled and analyzed whole-genome data for 731 immune cell traits, 1091 blood metabolites, 309 metabolic ratios, and disease data from 170,756 individuals with MDD and 329,443 controls.