Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Ara), and UDP-l-arabinofuranose (UDP-l-Ara) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Ara and UDP-l-Ara. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases , (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.3c00666DOI Listing

Publication Analysis

Top Keywords

sugar synthases
12
glycosylation reactions
8
nucleotide sugar
8
uridine diphosphate
8
engineered biosynthetic
4
biosynthetic platform
4
nucleotide
4
platform nucleotide
4
nucleotide sugars
4
sugars glycosylation
4

Similar Publications

Haplotype-resolved genomes of reveal nuclear differentiation, TE-mediated variation, and saprotrophic potential.

IMA Fungus

August 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China.

is a widely consumed edible mushroom and the only species currently cultivated on an industrial scale. Despite its economic importance, its trophic strategy and genomic adaptations remain elusive. Here, we presented high-quality, chromosome-level genome assemblies for two sexually compatible monokaryons (PP78 and PP85) of .

View Article and Find Full Text PDF

Magnesium nanoparticles enhance growth and reshape the rhizosphere microbial community in soybean (Glycine max L.).

Plant Physiol Biochem

September 2025

Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Magnesium (Mg) is an essential macronutrient in plants, vital for photosynthesis, enzyme activation, protein synthesis, and carbon metabolism. This study evaluated the effects of magnesium oxide nanoparticles (MgO NPs) on growth, physiological performance, and rhizosphere microbial composition in soybean (Glycine max L.).

View Article and Find Full Text PDF

[Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells].

Zhongguo Zhong Yao Za Zhi

July 2025

Shanxi University of Chinese Medicine, Key Laboratory of Benefiting Qi and Activating Blood Circulation to Treat Multiple Sclerosis (National Administration of Traditional Chinese Medicine), Neurobiology Research Center Jinzhong 030619, China Key Laboratory of Cellular Physiology (Ministry of Educati

This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

[Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro].

Zhongguo Zhong Yao Za Zhi

July 2025

Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004, China.

This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay.

View Article and Find Full Text PDF

Epimerases and dehydratases are widely studied members of the extended short-chain dehydrogenase/reductase (SDR) enzyme superfamily and are important in nucleotide sugar conversion and diversification, for example, the interconversion of uridine diphosphate (UDP)-linked glucose and galactose. Methanothermobacter thermautotrophicus contains a cluster of genes, the annotations of which indicate involvement in glycan biosynthesis such as that of cell walls or capsular polysaccharides. In particular, genes encoding UDP-glucose 4-epimerase related protein (Mth375), UDP-glucose 4-epimerase homologue (Mth380) and dTDP-glucose 4,6-dehydratase related protein (Mth373) may be involved in the biosynthesis of an unusual aminosugar in pseudomurein.

View Article and Find Full Text PDF