98%
921
2 minutes
20
Rho of Plant (ROP) GTPases function as molecular switches that control signaling processes essential for growth, development, and defense. However, their role in specialized metabolism is poorly understood. Previously, we demonstrated that inhibition of protein geranylgeranyl transferase (PGGT-I) negatively impacts the biosynthesis of monoterpene indole alkaloids (MIA) in Madagascar periwinkle (Catharanthus roseus), indicating the involvement of prenylated proteins in signaling. Here, we show through biochemical, molecular, and in planta approaches that specific geranylgeranylated ROPs modulate C. roseus MIA biosynthesis. Among the six C. roseus ROP GTPases (CrROPs), only CrROP3 and CrROP5, having a C-terminal CSIL motif, were specifically prenylated by PGGT-I. Additionally, their transcripts showed higher expression in most parts than other CrROPs. Protein-protein interaction studies revealed that CrROP3 and CrROP5, but not ΔCrROP3, ΔCrROP5, and CrROP2 lacking the CSIL motif, interacted with CrPGGT-I. Further, CrROP3 and CrROP5 exhibited nuclear localization, whereas CrROP2 was localized to the plasma membrane. In planta functional studies revealed that silencing of CrROP3 and CrROP5 negatively affected MIA biosynthesis, while their overexpression upregulated MIA formation. In contrast, silencing and overexpression of CrROP2 had no effect on MIA biosynthesis. Moreover, overexpression of ΔCrROP3 and ΔCrROP5 mutants devoid of sequence coding for the CSIL motif failed to enhance MIA biosynthesis. These results implicate that CrROP3 and CrROP5 have a positive regulatory role on MIA biosynthesis and thus shed light on how geranylgeranylated ROP GTPases mediate the modulation of specialized metabolism in C. roseus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiae142 | DOI Listing |
Plant Biotechnol J
September 2025
Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, SJTU-Fudan-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai,
Catharanthus roseus contains nearly 200 bioactive monoterpenoid indole alkaloids (MIAs) that are effective in treating cancer and other diseases. Ethylene plays a significant role in enhancing MIA biosynthesis, and we have found that it greatly induces the accumulation of anhydrovinblastine. However, the regulatory mechanisms underlying this process are not yet fully understood.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Heat shock protein family A member 4-like (HSPA4L) has been shown to be overexpressed in osteoarthritis (OA) patients, but its role in OA process still unknown. Chondrocytes were stimulated with interleukin-1β (IL-1β) to mimic OA cell model in vitro, and rat was injected with monosodium iodoacetate (MIA) to construct OA rat model in vivo. The expression of HSPA4L, methyltransferase-like 3 (METTL3) and extracellular matrix (ECM)-related markers was examined by qRT-PCR or western blot.
View Article and Find Full Text PDFDrug Des Devel Ther
September 2025
The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China.
Purpose: To assess the pharmacodynamic effects and therapeutic mechanisms of modified Fuzi decoction (MFZD) in osteoarthritis (OA), particularly OA-related inflammation.
Methods: The main components of MFZD were identified using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). An OA model was established in Sprague-Dawley rats via intra-articular injection of monoiodoacetate (MIA) to evaluate the anti-OA efficacy of MFZD via gavage.
PLoS One
September 2025
Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
Mammalian cells exhibit three autophagy mechanisms: macroautophagy, microautophagy (MIA), and chaperone-mediated autophagy (CMA), each employing unique mechanisms for transporting cellular material to the lysosome for degradation. MIA involves the engulfment of proteins via lysosomes/late endosomes through membrane invagination, while CMA directly imports cytosolic proteins into lysosomes, selectively targeting those harboring the KFERQ pentapeptide motif, helped by the chaperone HSC70. Despite the identification of several genetic markers of these pathways, our understanding of the underlying mechanisms, particularly in MIA and CMA, remains limited.
View Article and Find Full Text PDFTrends Cell Biol
August 2025
Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7a, CH-1005 Lausanne, Switzerland. Electronic address:
The intricate interplay between Wnt signaling and nicotinamide adenine dinucleotide (NAD biosynthesis has emerged as a crucial axis that influences aging and tissue regeneration. Wnt signaling, a key regulator of cellular proliferation, differentiation, and tissue homeostasis, intersects with NAD metabolism, a cornerstone of cellular energy balance and genomic stability. This relationship is mediated through shared regulatory pathways involving sirtuins, poly(ADP-ribose) polymerases (PARPs), and metabolic enzymes which are sensitive to cellular NAD levels.
View Article and Find Full Text PDF