98%
921
2 minutes
20
Heterotrophic soil microorganisms are responsible for ~50% of the carbon dioxide released by respiration from the terrestrial biosphere each year. The respiratory response of soil microbial communities to warming, and the control mechanisms, remains uncertain, yet is critical to understanding the future land carbon (C)-climate feedback. Individuals of nine species of fungi decomposing wood were exposed to 90 days of cooling to evaluate the medium-term effect of temperature on respiration. Overall, the effect of temperature on respiration increased in the medium term, with no evidence of compensation. However, the increasing effect of temperature on respiration was lost after correcting for changes in biomass. These results indicate that C loss through respiration of wood-decomposing fungi will increase beyond the direct effects of temperature on respiration, potentially promoting greater C losses from terrestrial ecosystems and a positive feedback to climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.17212 | DOI Listing |
J Therm Biol
September 2025
School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
Extreme climatic events, such as marine heatwaves (MHW) and increased suspended sediment concentration (SSC), are increasing in frequency and intensity, resulting in sudden changes to coastal environments, especially intertidal zones. Intertidal animals experience conditions that substantially fluctuate over temporal and spatial scales and therefore require the ability to physiologically tolerate these fluctuations. Since multiple stressors often co-occur and natural populations tend to respond to local environmental fluctuations, we aimed to investigate individual and combined effects of MHW and increased suspended sedimentation in Forsterygion lapillum from two neighbouring coastal areas with distinct water temperatures and wave current regimes by assessing fish oxygen consumption rate, mortality and weight loss.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium.
Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.
View Article and Find Full Text PDFNeurosci Biobehav Rev
September 2025
Chair of Acoustics and Haptics, Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Germany.
During the first month of life, exchanges between newborns and caregivers focus on helping babies regulate their physiological and behavioural states. Touch and bodily contact play a special role in facilitating arousal regulation and are often used to promote bonding, support at-risk babies, and manage pain. Here, we systematically review the extant evidence on the effects of touch interventions for newborns, specifically focusing on self-regulation and arousal as outcome measures.
View Article and Find Full Text PDFOecologia
September 2025
Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de La Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), 9000, Comodoro Rivadavia, Argentina.
Under the scenario of global warming, the response of carbon (C) fluxes of arid and semi-arid ecosystems, is still not well understood. A field warming experiment using open top chambers (OTCs) was conducted in a shrub-grass patagonian steppe to evaluate the effects on bare soil respiration (R), and ecosystem respiration (R), gross primary productivity (GPP) and net C exchange (NEE) during the growing season. Air (T) and soil (T) temperature, and soil available phosphorus changed significantly while there were no changes in soil moisture, soil organic carbon, total soil nitrogen and root biomass, after one-year of treatment.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
Max-Planck Institute for Biogeochemistry, Jena, Germany.
The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by C ages. Reported C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth.
View Article and Find Full Text PDF