98%
921
2 minutes
20
Suppressing metabolism in astronauts could decrease CO production. It is unknown whether active cooling is required to suppress metabolism in sedated patients. We hypothesized that hypothermia would have an additive effect with dexmedetomidine on suppressing metabolism. This is a randomized crossover trial of healthy subjects receiving sedation with dexmedetomidine and exposure to a cold (20°C) or thermal neutral (31°C) environment for 3 hours. We measured heart rate, blood pressure, core temperature, resting oxygen consumption (VO), resting carbon dioxide production (VCO), and resting energy expenditure (REE) at baseline and each hour of exposure to either environment. We also evaluated components of the Defense Automated Neurobehavioral Assessment (DANA) Brief to evaluate the effect of metabolic suppression on cognition. Six subjects completed the study. Heart rate and core temperature were lower during the cold (56 bpm) condition than the thermal neutral condition (67 bpm). VO, VCO, and REE decreased between baseline and the 3-hour measurement in the cold condition (Δ = 0.9 mL/min, 56.94 mL/min, 487.9 Kcal/D, respectively). DANA simple response time increased between baseline and start of recovery in both conditions (20°C 136.9 cognitive efficiency [CE] and 31°C 87.83 CE). DANA procedural reaction time increased between baseline and start of recovery in the cold condition (220.6 CE) but not in the thermal neutral condition. DANA Go/No-Go time increased between baseline and start of recovery in both conditions (20°C 222.1 CE and 31°C 122.3 CE). Sedation and cold environments are required for metabolic suppression. Subjects experienced decrements in cognitive performance in both conditions. A significant recovery period may be required after metabolic suppression before completing mission critical tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ther.2023.0085 | DOI Listing |
Anal Chim Acta
October 2025
Department of Chemistry, Tokyo Institute of Technology (Currently Institute of Science Tokyo), Meguro-ku, Tokyo, 152-8551, Japan; National Institute of Technology (KOSEN), Numazu College, 3600 Ooka, Numazu, Shizuoka, 410-8501, Japan. Electronic address:
Background: Graphene, with its unique electronic, thermal, and mechanical properties, plays an important role in electronic devices and batteries. Current applications strongly rely on liquid-phase processing, which requires stable graphene dispersions. However, stabilizing graphene dispersions in a liquid phase remains challenging because graphene easily aggregates due to strong inter-sheet forces.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
We numerically investigate the mixing characteristics of non-Newtonian fluids under the ion-partitioning effect in a micromixer having a built-in patterned soft polyelectrolyte layer (PEL) on its inner wall surfaces. We show that the mixing phenomenon is greatly modulated by the migration of counter-ions triggered by the Born energy difference caused by the electrical permittivity differences between the PEL and bulk electrolyte. We demonstrate counter-ion concentration field, flow velocity variation, species concentration distribution, mixing efficiency and neutral species dispersion by varying the electrical permittivity ratio and rheological parameters.
View Article and Find Full Text PDFSci China Life Sci
August 2025
International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Laccases, belonging to the superfamily of multicopper oxidases, can perform electron oxidation on a broad range of substrates, releasing only water as a by-product. Although instability and aggregation significantly constrain the industrial use of these eco-friendly biocatalysts, it is a daunting challenge for current engineering strategies to elevate these crucial enzymatic characteristics simultaneously. Here, we developed a cyclizing laccase (CyLacc) using SpyTag/SpyCatcher technology, which endows the enzyme with high thermostability and high solubility.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2025
Department of Chemistry, Instituto de Investigación Química de la Universidad de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios 53, Logroño, 26004, Spain.
Solar energy storage is key to overcome the intermittent character of sunlight. We present a sustainable solution based on norbornadiene-quadricyclane pairs for molecular solar thermal (MOST) energy storage working in highly concentrated neutral water solutions and solid state. Photochemical preparation of high-energy, metastable isomers in previously unattainable 1.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Chemistry, College of Science, King Faisal University, 31982, Al-Hassa, Saudi Arabia.
This study demonstrates the photocatalytic degradation efficiency of doped NiZnO and co-doped CdNiZnO NPs. Initially, ZnO NPs with a unique mesoporous ellipsoidal morphology were synthesized by simple precipitation and calcination. Powder X-ray diffraction revealed the formation of a hexagonal phase of the wurtzite structure.
View Article and Find Full Text PDF