Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hemorrhagic toxin (TcsH) is a major virulence factor produced by Paeniclostridium sordellii, which is a non-negligible threat to women undergoing childbirth or abortions. Recently, Transmembrane Serine Protease 2 (TMPRSS2) was identified as a host receptor of TcsH. Here, we show the cryo-EM structures of the TcsH-TMPRSS2 complex and uncover that TcsH binds to the serine protease domain (SPD) of TMPRSS2 through the CROP unit-VI. This receptor binding mode is unique among LCTs. Five top surface loops of TMPRSS2, which also determine the protease substrate specificity, constitute the structural determinants recognized by TcsH. The binding of TcsH inhibits the proteolytic activity of TMPRSS2, whereas its implication in disease manifestations remains unclear. We further show that mutations selectively disrupting TMPRSS2-binding reduce TcsH toxicity in the intestinal epithelium of the female mice. These findings together shed light on the distinct molecular basis of TcsH-TMPRSS2 interactions, which expands our knowledge of host recognition mechanisms employed by LCTs and provides novel targets for developing therapeutics against P. sordellii infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912200PMC
http://dx.doi.org/10.1038/s41467-024-46394-6DOI Listing

Publication Analysis

Top Keywords

molecular basis
8
paeniclostridium sordellii
8
hemorrhagic toxin
8
serine protease
8
tcsh
6
tmprss2
5
basis tmprss2
4
tmprss2 recognition
4
recognition paeniclostridium
4
sordellii hemorrhagic
4

Similar Publications

DNA replication requires recruitment of Cdc45 and GINS into the MCM double hexamer by initiation factors to form an active helicase, the Cdc45-MCM-GINS (CMG) complex, at the replication origins. The initiation factor Sld3 is a central regulator of Cdc45 and GINS recruitment, working with Sld7 together. However, the mechanism through which Sld3 regulates CMG complex formation remains unclear.

View Article and Find Full Text PDF

We develop the theory justifying the application of the density-based basis-set correction (DBBSC) method to double-hybrid approximations in order to accelerate their basis convergence. We show that, for the one-parameter double hybrids based on the adiabatic connection, the exact dependence of the basis-set correction functional on the coupling-constant parameter λ involves a uniform coordinate scaling by a factor 1/λ of the density and of the basis functions. Neglecting this uniform coordinate scaling corresponds essentially to the recent work of Mester and Kállay, J.

View Article and Find Full Text PDF

Diverse marine species convert methylphosphonate to methane.

Mar Life Sci Technol

August 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China.

Unlabelled: Microbial degradation of methylphosphonate (MPn) is an important pathway contributing to the 'methane paradox' in the oxic ocean. spp. are suggested to participate in this process.

View Article and Find Full Text PDF

Background: Stickler syndrome (STL) is a group of related connective tissue disorders characterized by heterogeneous clinical presentations with varying degrees of orofacial, ocular, skeletal, and auditory abnormalities. However, this condition is difficult to diagnose on the basis of clinical features because of phenotypic variability. Thus, expanding the variant spectrum of this disease will aid in achieving a firm definitive diagnosis of STL.

View Article and Find Full Text PDF

The gut commensal attenuates indole-AhR signaling and restores ASD-like behaviors with BTBR mice.

Front Microbiol

August 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Autism spectrum disorders (ASD), a group of neurodevelopmental disorders characterized by the core symptoms of impaired social communication and stereotyped behaviors, is strongly associated with dysregulated microbiota-gut-brain axis. Emerging evidence suggests that , which showed reduced abundance in ASD cohorts, holds therapeutic potential, though its interaction with host remain unexplored. Here, we investigated the efficacy and molecular basis of 4P-15 (4P-15) in BTBR /J (BTBR) mice, an idiopathic ASD mouse model.

View Article and Find Full Text PDF