98%
921
2 minutes
20
Background: Vascular disrupting agents (VDAs) are known to specifically target preexisting tumoural vasculature. However, systemic side effects as safety or toxicity issues have been reported from clinical trials, which call for further preclinical investigations. The purpose is to gain insights into their non-specific off-targeting effects on normal vasculature and provide clues for exploring underlying molecular mechanisms.
Methods: Based on a recently introduced platform consisting laser speckle contrast imaging (LSCI), chick embryo chorioallantoic membrane (CAM), and assisted deep learning techniques, for evaluation of vasoactive medicines, hemodynamics on embryonic day 12 under constant intravascular infusion of two VDAs were qualitatively observed and quantitatively measured in real time for 30 min. Blood perfusion, vessel diameter, vessel density, and vessel total length were further analyzed and compared between blank control and medicines dose groups by using multi-factor analysis of variance (ANOVA) analysis with factorial interactions. Conventional histopathology and fluorescent immunohistochemistry (FIHC) assays for endothelial cytoskeleton including ß-tubulin and F-actin were qualitatively demonstrated, quantitatively analyzed and further correlated with hemodynamic and vascular parameters.
Results: The normal vasculature was systemically negatively affected by VDAs with statistical significance (P<0.0001), as evidenced by four positively correlated parameters, which can explain the side-effects observed among clinical patients. Such effects appeared to be dose dependent (P<0.0001). FIHC assays qualitatively and quantitatively verified the results and exposed molecular mechanisms.
Conclusions: LSCI-CAM platform combining with deep learning technique proves useful in preclinical evaluations of vasoactive medications. Such new evidences provide new reference to clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895113 | PMC |
http://dx.doi.org/10.21037/qims-23-1065 | DOI Listing |
RSC Med Chem
August 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States of America.
A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.
View Article and Find Full Text PDFExp Clin Transplant
August 2025
>From the Department of Urology, University Hospital Hradec Kralove, Hradec Kralove, Czechia; and the Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia.
Objectives: Kidney transplant is a life-saving procedure for patients with end-stage renal disease. Success of kidney transplant is highly dependent on maintaining the integrity of the endothelium and its protective layer, the endothelial glycocalyx. Ischemia-reperfusion injury, a common challenge in kidney transplant, can disrupt the endothelial glycocalyx, leading to various post-transplant complications.
View Article and Find Full Text PDFCancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDFRedox Biol
August 2025
Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. Electronic
Tobacco smoke is the main risk factor for the development of chronic obstructive pulmonary disease (COPD). Despite current therapies alleviate symptoms there are limitations in the efficacy of treatments to curb its cardiovascular morbidities, particularly vascular dysfunction and the development of pulmonary hypertension. Our previous studies demonstrate that cigarette smoke directly contributes to pulmonary arterial dysfunction.
View Article and Find Full Text PDFAnim Reprod Sci
September 2025
Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.
View Article and Find Full Text PDF