98%
921
2 minutes
20
Engineered by nature, biological entities are exceptional building blocks for biomaterials. These entities can impart enhanced functionalities on the final material that are otherwise unattainable. However, preserving the bioactive functionalities of these building blocks during the material fabrication process remains a challenge. We describe a high-throughput protocol for the bottom-up self-assembly of highly concentrated phages into microgels while preserving and amplifying their inherent antimicrobial activity and biofunctionality. Each microgel is comprised of half a million cross-linked phages as the sole structural component, self-organized in aligned bundles. We discuss common pitfalls in the preparation procedure and describe optimization processes to ensure the preservation of the biofunctionality of the phage building blocks. This protocol enables the production of an antimicrobial spray containing the manufactured phage microgels, loaded with potent virulent phages that effectively reduced high loads of multidrug-resistant Escherichia coli O157:H7 on red meat and fresh produce. Compared with other microgel preparation methods, our protocol is particularly well suited to biological materials because it is free of organic solvents and heat. Bench-scale preparation of base materials, namely microporous films (the template for casting microgels) and pure concentrated phage suspension, requires 3.5 h and 5 d, respectively. A single production run, that yields over 1,750,000 microgels, ranges from 2 h to 2 d depending on the rate of cross-linking chemistry. We expect that this platform will address bottlenecks associated with shelf-stability, preservation and delivery of phage for antimicrobial applications, expanding the use of phage for prevention and control of bacterial infections and contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-024-00964-6 | DOI Listing |
Org Lett
September 2025
Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
To address the current limitations of DNA-compatible Sonogashira cross-coupling reactions capable of accommodating a broad range of commercially available phenolic building blocks (BBs), an SuFEx-Sonogashira cross-coupling protocol has been developed. This protocol involves the conversion of readily accessible phenolic compounds into the corresponding aryl fluorosulfates within 96-well microplates via a highly efficient liquid-phase SuFEx reaction, followed by Sonogashira cross-coupling with DNA-conjugated terminal alkynes.
View Article and Find Full Text PDFJ Hosp Infect
September 2025
Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Tropical Infectious Diseases Unit, Liverpool University Hospitals Foundation Trust, Liverpool, UK.
Background: Antimicrobial resistance (AMR) transmission is shaped by a complex interplay of health system factors, many of which remain underexplored or insufficiently addressed. This study investigates concrete systemic transmission drivers in hospitals and long-term care facilities (LTCFs) for older adults in Merseyside, UK.
Methods: Qualitative data were collected through semi-structured interviews with 37 purposively selected participants across hospitals, LTCFs, community settings, and ambulance services.
Int Immunopharmacol
September 2025
Key Laboratory for Biorheological Science and Technology of Chinese Ministry of Education, National Local Joint Engineering Lab for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; JinFeng Laboratory, Chongqing, 401329, China. Electronic address: wanggx@cq
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that plays a crucial role in the pathophysiology of asthma, initiating multiple allergic cascade responses. Tezepelumab is the only monoclonal antibody currently approved for marketing, which acts by blocking TSLP binding to TSLPR. However, it is reported that a TSLP trap which simultaneously block TSLP binding with TSLPR and IL-7Rα has better efficiency in the repression of TSLP signal pathway.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The discovery of new weak supramolecular interactions and supramolecular synthons is essential for directing self-assembly processes with enhanced precision, diversity, and functionality in complex molecular architectures. Here, we report the controlled self-assembly of diverse supramolecular architectures by a new directional bonding approach through the integration of radical-based dynamic covalent chemistry and supramolecular synthons. A novel macrocyclic synthon, , with a linear direction is constructed via radical-based dynamic covalent bonds from the phenothiazine building block substituted with two dicyanomethyl radicals.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
October 2025
Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.
Ease of access to data, tools and models expedites scientific research. In structural biology there are now numerous open repositories of experimental and simulated data sets. Being able to easily access and utilize these is crucial to allow researchers to make optimal use of their research effort.
View Article and Find Full Text PDF