Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB.

bioRxiv

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mitomycin C (MMC) repair factor A () and factor B (), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium . Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889028PMC
http://dx.doi.org/10.1101/2024.02.15.580553DOI Listing

Publication Analysis

Top Keywords

exonuclease
8
exonuclease repair
8
inactive state
8
mrfb
5
dna
5
structural biochemical
4
biochemical characterization
4
characterization mitomycin
4
repair
4
mitomycin repair
4

Similar Publications

Monogenic lupus offers valuable insights into the underlying mechanisms and therapeutic approaches for systemic lupus erythematosus (SLE). Here we report on five patients with SLE carrying recessive mutations in phospholipase D family member 4 (PLD4). Deleterious variants in PLD4 resulted in impaired single-stranded nucleic acid exonuclease activity in in vitro and ex vivo assays.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF

Replication of cellular chromosomes requires a primase to generate short RNA primers to initiate genomic replication. While bacterial and archaeal primase generate short RNA primers, the eukaryotic primase, Polα-primase, contains both RNA primase and DNA polymerase (Pol) subunits that function together to form a >20 base hybrid RNA-DNA primer. Interestingly, the DNA Pol1 subunit of Polα lacks a 3'-5' proofreading exonuclease, contrary to the high-fidelity normally associated with DNA replication.

View Article and Find Full Text PDF

Aims: This study aims to develop and evaluate a rapid and high-multiplex pathogen detection method for clinical and food specimens to address the ongoing public health threat of foodborne infections and the limitations of conventional culture-based diagnostics.

Methods And Results: The foodborne bacteria (FBB) assay integrates multiplex PCR, T7 exonuclease hydrolysis, and a suspension bead array to simultaneously detect 16 genes from 13 major foodborne bacteria. Analytical performance was evaluated using reference strains, while diagnostic performance was assessed using clinical and food samples.

View Article and Find Full Text PDF

Gabija restricts phages that antagonize a conserved host DNA repair complex.

bioRxiv

August 2025

UC San Francisco, Dept. of Microbiology & Immunology, 600 16th St N374, San Francisco, CA 94158.

Anti-bacteriophage systems like restriction-modification and CRISPR-Cas have DNA substrate specificity mechanisms that enable identification of invaders. How Gabija, a highly prevalent nuclease-helicase anti-phage system, executes self- vs. non-self-discrimination remains unknown.

View Article and Find Full Text PDF