98%
921
2 minutes
20
Two-dimensional (2D) materials offer potential as substrates for biosensing devices, as their properties can be engineered to tune interactions between the surface and biomolecules. Yet, not many methods can measure these interactions in a liquid environment without introducing labeling agents such as fluorophores. In this work, we harness interferometric scattering (iSCAT) microscopy, a label-free imaging technique, to investigate the interactions of single molecules of long dsDNA with 2D materials. The millisecond temporal resolution of iSCAT allows us to capture the transient interactions and to observe the dynamics of unlabeled DNA binding to a hexagonal boron nitride (hBN) surface in solution for extended periods (including a fraction of 10%, of trajectories lasting longer than 110 ms). Using a focused ion beam technique to engineer defects, we find that DNA binding affinity is enhanced at defects; when exposed to long lanes, DNA binds preferentially at the lane edges. Overall, we demonstrate that iSCAT imaging is a useful tool to study how biomolecules interact with 2D materials, a key component in engineering future biosensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885193 | PMC |
http://dx.doi.org/10.1021/acsphotonics.3c01604 | DOI Listing |
Toxicol Pathol
September 2025
Mannheim University of Applied Sciences, Mannheim, Germany.
The molecular identification of alpha2 urinary protein in male rat kidneys is crucial in distinguishing human relevant from rat-specific cases of nephropathy caused by protein accumulation. As protein accumulation in the kidney presents uniformly as hyaline eosinophilic droplets, the identification of the causative protein can be very difficult, especially if suitable antibodies are lacking. We describe the successful identification of two morphologically similar protein accumulations (alpha2u protein and lysozyme) in rat kidneys by the matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI).
View Article and Find Full Text PDFMethods
September 2025
Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China. Electronic address:
Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.
View Article and Find Full Text PDFAnal Chem
September 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Deciphering the multicomponent of cell membranes at the single-cell level is critical for understanding pathological mechanisms such as tumor metastasis, yet remains technically daunting due to the membrane's nanoscale thickness and ultralow molecular abundance. Here, we introduce a surface-assisted vacuum ultraviolet laser desorption-ionization mass spectrometry imaging (SAVUVDI-MSI) platform that overcomes long-standing challenges of cytoplasmic interference and insufficient sensitivity. Leveraging the nanoscale depth profiling capability of VUV-LDI, we achieve precise ablation of a single-cell membrane.
View Article and Find Full Text PDFAnal Chem
September 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.
Mass spectrometry imaging (MSI) is a label-free technique that enables the visualization of the spatial distribution of thousands of ions within biosamples. Data denoising is the computational strategy aimed at enhancing the MSI data quality, providing an effective alternative to experimental methods. However, due to the complex noise pattern inherent in MSI data and the difficulty in obtaining ground truth from noise-free data, achieving reliable denoised images remains challenging.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.
The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.
View Article and Find Full Text PDF