A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of Thermal Exposure on the Microstructure and Mechanical Properties of a Ti-48Al-3Nb-1.5Ta Alloy via Powder Hot Isostatic Pressing. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Research on how thermal exposure affects the microstructure and mechanical properties of the Ti-48Al-3Nb-1.5Ta (at. %) alloy, which is prepared via powder hot isostatic pressing (P-HIP), is essential since this low-density alloy shows promise for use in high-temperature applications, particularly for aero-engines, which require long-term stable service. In this study, a P-HIP Ti-48Al-3Nb-1.5Ta (at. %) alloy was exposed to high temperatures for long durations. The phase, microstructure and mechanical properties of the P-HIP Ti-48Al-3Nb-1.5Ta alloy after thermal exposure under different conditions were analyzed using XRD, SEM, EBSD, EPMA, TEM, nanomechanical testing and tensile testing. The surface scale is composed of oxides and nitrides, primarily AlO, TiO, and TiN, among which AlO is preferentially generated and then covered by rapidly growing TiO as the thermal exposure duration increases. The nitrides appear later than the oxides and exist between the oxides and the substrate. With increasing exposure temperature and duration, the surface scale becomes more continuous, TiO particles grow larger, and the oxide layer thickens or even falls off. The addition of Ta and Nb can improve the oxidation resistance because Ta and Nb replace Ti in the rutile lattice and weaken O diffusion. Compared with the P-HIP Ti-48Al-3Nb-1.5Ta alloy, after thermal exposure, the grain size does not increase significantly, and the γ phase increases slightly (by less than 3%) with the decomposition of the α phase. With increasing thermal exposure duration, the γ phase exhibits discontinuous coarsening (DC). Compared with the P-HIP Ti-48Al-3Nb-1.5Ta alloy, the hardness increases by about 2 GPa, the tensile strength increases by more than 50 MPa, and the fracture strain decreases by about 0.1% after thermal exposure. When the depth extends from the edge of the thermally exposed specimens, the hardness decreases overall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890613PMC
http://dx.doi.org/10.3390/ma17040794DOI Listing

Publication Analysis

Top Keywords

thermal exposure
28
ti-48al-3nb-15ta alloy
24
p-hip ti-48al-3nb-15ta
16
microstructure mechanical
12
mechanical properties
12
exposure
8
exposure microstructure
8
properties ti-48al-3nb-15ta
8
powder hot
8
hot isostatic
8

Similar Publications