Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spine biomechanics is at a transformation with the advent and integration of machine learning and computer vision technologies. These novel techniques facilitate the estimation of 3D body shapes, anthropometrics, and kinematics from as simple as a single-camera image, making them more accessible and practical for a diverse range of applications. This study introduces a framework that merges these methodologies with traditional musculoskeletal modeling, enabling comprehensive analysis of spinal biomechanics during complex activities from a single camera. Additionally, we aim to evaluate their performance and limitations in spine biomechanics applications. The real-world applications explored in this study include assessment in workplace lifting, evaluation of whiplash injuries in car accidents, and biomechanical analysis in professional sports. Our results demonstrate potential and limitations of various algorithms in estimating body shape, kinematics, and conducting in-field biomechanical analyses. In industrial settings, the potential to utilize these new technologies for biomechanical risk assessments offers a pathway for preventive measures against back injuries. In sports activities, the proposed framework provides new opportunities for performance optimization, injury prevention, and rehabilitation. The application in forensic domain further underscores the wide-reaching implications of this technology. While certain limitations were identified, particularly in accuracy of predictions, complex interactions, and external load estimation, this study demonstrates their potential for advancement in spine biomechanics, heralding an optimistic future in both research and practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2024.111967DOI Listing

Publication Analysis

Top Keywords

spine biomechanics
16
machine learning
8
applications
5
biomechanics
5
learning applications
4
spine
4
applications spine
4
biomechanics spine
4
biomechanics transformation
4
transformation advent
4

Similar Publications

Microstructure of the anterior iliac Spine: Identification of trends and relation to fracture tolerance.

J Mech Behav Biomed Mater

September 2025

Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Drive, Charlottesville, VA, 22911, United States.

Seatbelt-induced pelvic iliac wing injuries have been observed since the 1970s, but only recently has there been quantification of fracture tolerance and injury risk of the iliac wing. Previous studies have shown a wide variation in iliac wing fracture tolerance with no significant relationships to pelvis size, sex, or other factors. A weighted average bone density (BD) calculation of the entire iliac wing produced the best predictive performance of fracture tolerance in parametric (Weibull) survival models.

View Article and Find Full Text PDF

BACKGROUND Degenerative cervical spondylotic myelopathy (CSM) is an age-related degenerative condition of the vertebral bodies, discs, and ligaments that can cause pressure on the spinal cord and nerves. Anterior cervical corpectomy and fusion is a widely used surgical approach for treating CSM, aiming to decompress the spinal cord, restore vertebral alignment, and improve fusion rates, thus providing relief to affected patients. This study was a neurological and biomechanical evaluation of 72 patients with degenerative CSM at 3, 6, and 12 months following anterior cervical corpectomy and fusion.

View Article and Find Full Text PDF

Background Sacroiliac joint fusion is performed to stabilize and fuse the joint in patients with degenerative sacroiliitis and joint dysfunction. While several posterior techniques and implants exist as alternatives to lateral approaches, biomechanical and clinical performance data for these systems used as standalone remains limited. This article provides a preliminary cadaveric and clinical assessment of a novel posterior intra-articular sacroiliac fusion implant system.

View Article and Find Full Text PDF

This study aims to clarify the dynamic changes in the cervical lordotic angle (CLA) during normal swallowing using an automated motion analysis method. Physiological cervical lordosis is crucial for spinal alignment and musculoskeletal function. While previous studies have noted the relevance of cervical curvature in clinical contexts, its dynamic modulation during swallowing has not been well studied.

View Article and Find Full Text PDF

The cervicothoracic junction (CTJ) presents a surgical challenge due to its transitional nature from mobile to rigid segments. Therefore, the biomechanical characteristics of this transitional zone must be taken into consideration during instrumentation. This study aimed to determine the efficacy of the cervical pedicle screw placement (CPS) combined with 5.

View Article and Find Full Text PDF