98%
921
2 minutes
20
Diet is currently recognized as a major modifiable agent of human health. In particular, dietary nitrate has been increasingly explored as a strategy to modulate different physiological mechanisms with demonstrated benefits in multiple organs, including gastrointestinal, cardiovascular, metabolic, and endocrine systems. An intriguing exception in this scenario has been the brain, for which the evidence of the nitrate benefits remains controversial. Upon consumption, nitrate can undergo sequential reduction reactions in vivo to produce nitric oxide (•NO), a ubiquitous paracrine messenger that supports multiple physiological events such as vasodilation and neuromodulation. In the brain, •NO plays a key role in neurovascular coupling, a fine process associated with the dynamic regulation of cerebral blood flow matching the metabolic needs of neurons and crucial for sustaining brain function. Neurovascular coupling dysregulation has been associated with neurodegeneration and cognitive dysfunction during different pathological conditions and aging. We discuss the potential biological action of nitrate on brain health, concerning the molecular mechanisms underpinning this association, particularly via modulation of •NO-dependent neurovascular coupling. The impact of nitrate supplementation on cognitive performance was scrutinized through preclinical and clinical data, suggesting that intervention length and the health condition of the participants are determinants of the outcome. Also, it stresses the need for multimodal quantitative studies relating cellular and mechanistic approaches to function coupled with behavior clinical outputs to understand whether a mechanistic relationship between dietary nitrate and cognitive health is operative in the brain. If proven, it supports the exciting hypothesis of cognitive enhancement via diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST20230491 | DOI Listing |
J Integr Neurosci
August 2025
Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, 211166 Nanjing, Jiangsu, China.
Cognitive impairment represents a progressive neurodegenerative condition with severity ranging from mild cognitive impairment (MCI) to dementia and exerts significant burdens on both individuals and healthcare systems. Vascular cognitive impairment (VCI) represents a heterogeneous clinical continuum, spanning a spectrum from subcortical ischemic VCI (featuring small vessel disease, white matter lesions, and lacunar infarcts) to mixed dementia, where vascular and Alzheimer's-type pathologies coexist. While traditionally linked to macro- and microvascular dysfunction, the mechanisms underlying VCI remain complex.
View Article and Find Full Text PDFNeuroimage Rep
September 2025
School of Psychology, Faculty of Medicine and Health, University of Leeds, LS2 9JT, UK.
Background: Theta Burst Stimulation (TBS) is a form of non-invasive brain stimulation that can induce neuroplastic changes in the underlying intracortical areas. It has significant potential in clinical and research settings for modulating cognitive and motor performance. Little is known about how TBS affects oxygenations levels within and across brain hemispheres during stimulation of the Dorsolateral Prefrontal Cortex (DLPFC).
View Article and Find Full Text PDFImaging Neurosci (Camb)
September 2025
CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France.
We propose a new, modular, open-source, Python-based 3D+time realistic functional magnetic resonance imaging (fMRI) data simulation software. SNAKE or imulator from eurovascular coupling to cquisition of -space data for xploration of fMRI acquisition techniques. It is the first simulator to simulate the entire chain of fMRI data acquisition, from the spatio-temporal design of evoked brain responses to various 3D sampling strategies of k-space data with multiple coils.
View Article and Find Full Text PDFAging Dis
September 2025
Key Laboratory of Basic Theory Research on Traditional Chinese Medicine, Harbin, 150040, China.
Alzheimer's disease (AD) and vascular dementia (VD) are the two most common forms of dementia, and they share common mechanisms, especially in regard to neurovascular dysfunction. There has been increasing evidence that the disruption of the neurovascular unit (NVU), which consists of endothelial cells, pericytes, astrocytes, microglia, neurons, and basement membrane, is one of the key early events in both AD and VD. The objective of this review is to summarize the structure and physiological function of the NVU, then discuss the pathological remodeling of the NVU in AD and VD and finally, show emerging evidence of multi-target approaches that restore the NVU and neurovascular protection.
View Article and Find Full Text PDFbioRxiv
August 2025
Early Life Imaging Research Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Human cortical development leading up to and around birth is crucial for lifelong brain function. Cortical activity can be studied using BOLD fMRI, however, previously limited sensitivity and spatial specificity has constrained understanding of how its emergence relates to functional cortical circuitry and neurovascular development at the mesoscale. To resolve this, we used ultra-high-field 7 Tesla MRI to acquire submillimetre resolution BOLD-fMRI data from 40 newborns and 4 adults.
View Article and Find Full Text PDF