A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An intelligent neural network model to detect red blood cells for various blood structure classification in microscopic medical images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biomedical image analysis plays a crucial role in enabling high-performing imaging and various clinical applications. For the proper diagnosis of blood diseases related to red blood cells, red blood cells must be accurately identified and categorized. Manual analysis is time-consuming and prone to mistakes. Analyzing multi-label samples, which contain clusters of cells, is challenging due to difficulties in separating individual cells, such as touching or overlapping cells. High-performance biomedical imaging and several medical applications are made possible by advanced biosensors. We develop an intelligent neural network model that can automatically identify and categorize red blood cells from microscopic medical images using region-based convolutional neural networks (RCNN) and cutting-edge biosensors. Our model successfully navigates obstacles like touching or overlapping cells and accurately recognizes various blood structures. Additionally, we utilized data augmentation as a pre-processing method on microscopic images to enhance the model's computational efficiency and expand the sample size. To refine the data and eliminate noise from the dataset, we utilized the Radial Gradient Index filtering algorithm for imaging data equalization. We exhibit improved detection accuracy and a reduced model loss rate when using medical imagery datasets to apply our proposed model in comparison to existing ResNet and GoogleNet models. Our model precisely detected red blood cells in a collection of medical images with 99% training accuracy and 91.21% testing accuracy. Our proposed model outperformed earlier models like ResNet-50 and GoogleNet by 10-15%. Our results demonstrated that Artificial intelligence (AI)-assisted automated red blood cell detection has the potential to revolutionize and speed up blood cell analysis, minimizing human error and enabling early illness diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879026PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26149DOI Listing

Publication Analysis

Top Keywords

red blood
24
blood cells
20
medical images
12
blood
10
cells
9
intelligent neural
8
neural network
8
network model
8
microscopic medical
8
cells accurately
8

Similar Publications