Enhancing drug discovery in schizophrenia: a deep learning approach for accurate drug-target interaction prediction - DrugSchizoNet.

Comput Methods Biomech Biomed Engin

Department of Computer Science and Engineering, R.M.D. Engineering College, Kavaraipettai, India.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug discovery relies on the precise prognosis of drug-target interactions (DTI). Due to their ability to learn from raw data, deep learning (DL) methods have displayed outstanding performance over traditional approaches. However, challenges such as imbalanced data, noise, poor generalization, high cost, and time-consuming processes hinder progress in this field. To overcome the above challenges, we propose a DL-based model termed DrugSchizoNet for drug interaction (DI) prediction of Schizophrenia. Our model leverages drug-related data from the DrugBank and repoDB databases, employing three key preprocessing techniques. First, data cleaning eliminates duplicate or incomplete entries to ensure data integrity. Next, normalization is performed to enhance security and reduce costs associated with data acquisition. Finally, feature extraction is applied to improve the quality of input data. The three layers of the DrugSchizoNet model are the input, hidden and output layers. In the hidden layer, we employ dropout regularization to mitigate overfitting and improve generalization. The fully connected (FC) layer extracts relevant features, while the LSTM layer captures the sequential nature of DIs. In the output layer, our model provides confidence scores for potential DIs. To optimize the prediction accuracy, we utilize hyperparameter tuning through OB-MOA optimization. Experimental results demonstrate that DrugSchizoNet achieves a superior accuracy of 98.70%. The existing models, including CNN-RNN, DANN, CKA-MKL, DGAN, and CNN, across various evaluation metrics such as accuracy, recall, specificity, precision, F1 score, AUPR, and AUROC are compared with the proposed model. By effectively addressing the challenges of imbalanced data, noise, poor generalization, high cost and time-consuming processes, DrugSchizoNet offers a promising approach for accurate DTI prediction in Schizophrenia. Its superior performance demonstrates the potential of DL in advancing drug discovery and development processes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2023.2282951DOI Listing

Publication Analysis

Top Keywords

drug discovery
12
deep learning
8
approach accurate
8
interaction prediction
8
drugschizonet drug
8
data
8
challenges imbalanced
8
imbalanced data
8
data noise
8
noise poor
8

Similar Publications

Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.

View Article and Find Full Text PDF

Purpose: Accurate prediction of human clearance (CL) is essential in early drug development. Single Species Scaling (SSS) using rat pharmacokinetic (PK) data, particularly with unbound plasma fraction (f), is widely used. However, its accuracy declines for compounds with extremely low f, and no systematic method has addressed this limitation.

View Article and Find Full Text PDF

Radial spokes (RSs) are conserved multimolecular structures attached to the axonemal microtubule doublets and are essential for the motility control of both cilia and sperm flagella. CFAP91, an RS3 protein, is implicated in human male infertility, yet its molecular function remains poorly understood. Here, we demonstrate that Cfap91 knockout (KO) mice exhibit impaired sperm flagellum formation and male infertility.

View Article and Find Full Text PDF

Characterization of CNS Network Changes in Two Rodent Models of Chronic Pain.

Biol Pharm Bull

September 2025

Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).

View Article and Find Full Text PDF