A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A multi-task model for reliable classification of thyroid nodules in ultrasound images. | LitMetric

A multi-task model for reliable classification of thyroid nodules in ultrasound images.

Biomed Eng Lett

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thyroid nodules are common, and patients with potential malignant lesions are usually diagnosed using ultrasound imaging to determine further treatment options. This study aims to propose a computer-aided diagnosis method for benign and malignant classification of thyroid nodules in ultrasound images. We propose a novel multi-task framework that combines the advantages of dense connectivity, Squeeze-and-Excitation (SE) connectivity, and Atrous Spatial Pyramid Pooling (ASPP) layer to enhance feature extraction. The Dense connectivity is used to optimize feature reuse, the SE connectivity to optimize feature weights, the ASPP layer to fuse feature information, and a multi-task learning framework to adjust the attention of the network. We evaluate our model using a 10-fold cross-validation approach based on our established Thyroid dataset. We assess the performance of our method using six average metrics: accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC, which are 93.49, 95.54, 91.52, 91.63, 95.47, and 96.84%, respectively. Our proposed method outperforms other classification networks in all metrics, achieving optimal performance. We propose a multi-task model, DSMA-Net, for distinguishing thyroid nodules in ultrasound images. This method can further enhance the diagnostic ability of doctors for suspected cancer patients and holds promise for clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874359PMC
http://dx.doi.org/10.1007/s13534-023-00325-4DOI Listing

Publication Analysis

Top Keywords

thyroid nodules
16
nodules ultrasound
12
ultrasound images
12
multi-task model
8
classification thyroid
8
dense connectivity
8
aspp layer
8
connectivity optimize
8
optimize feature
8
thyroid
5

Similar Publications