98%
921
2 minutes
20
Introduction: Transmissible vaccines offer a novel approach to suppressing viruses in wildlife populations, with possible applications against viruses that infect humans as zoonoses - Lassa, Ebola, rabies. To ensure safety, current designs propose a recombinant vector platform in which the vector is isolated from the target wildlife population. Because using an endemic vector creates the potential for preexisting immunity to block vaccine transmission, these designs focus on vector viruses capable of superinfection, spreading throughout the host population following vaccination of few individuals.
Areas Covered: We present original theoretical arguments that, regardless of its R value, a recombinant vaccine using a superinfecting vector is not expected to expand its active infection coverage when released into a wildlife population that already carries the vector. However, if superinfection occurs at a high rate such that individuals are repeatedly infected throughout their lives, the immunity footprint in the population can be high despite a low incidence of active vaccine infections. Yet we provide reasons that the above expectation is optimistic.
Expert Opinion: High vaccine coverage will typically require repeated releases or release into a population lacking the vector, but careful attention to vector choice and vaccine engineering should also help improve transmissible vaccine utility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003445 | PMC |
http://dx.doi.org/10.1080/14760584.2024.2320845 | DOI Listing |
FEMS Microbiol Rev
September 2025
CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
African Swine Fever (ASF), caused by the highly contagious African swine fever virus (ASFV), poses a significant threat to domestic and wild pigs worldwide. Despite its limited host range and lack of zoonotic potential, ASF has severe socio-economic and environmental consequences. Current control strategies primarily rely on early detection and culling of infected animals, but these measures are insufficient given the rapid spread of the disease.
View Article and Find Full Text PDFJ Virol
September 2025
Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands.
Vertebrate animals and many small DNA and single-stranded RNA viruses that infect vertebrates have evolved to suppress genomic CpG dinucleotides. All organisms and most viruses additionally suppress UpA dinucleotides in protein-coding RNA. Synonymously recoding viral genomes to introduce CpG or UpA dinucleotides has emerged as an approach for viral attenuation and vaccine development.
View Article and Find Full Text PDFFront Microbiol
August 2025
Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses in the swine industry since emerging in the late 1980s. Although vaccination has been widely used to control PRRS epidemics in Chinese pig farms, they provided limited protection against PRRSV transmission; moreover, no effective therapeutic drugs are available. Therefore, there is an urgent need to develop novel antiviral strategies to control PRRSV epidemics.
View Article and Find Full Text PDFBMJ Public Health
September 2025
School of Public Health, Nanjing Medical University, Nanjing, China.
Background: Since the emergence of the COVID-19 pandemic, how meteorological factors and COVID-19 control measures in China impact the transmission dynamics of influenza-like illness (ILI) across age groups remains unclear.
Objective: This study aims to explore the changes in the seasonal ILI epidemics and the effects of meteorological factors across age groups in Jiangsu, China, before the COVID-19 pandemic and after the relaxation of COVID-19 control measures.
Methods: The time-varying reproduction number ( ) and doubling time of ILI were deployed to describe the trend and iteration time of the ILI epidemic, and the effect of Chinese government response to COVID-19 on the ILI epidemic, respectively.
Front Immunol
September 2025
Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
Innate-like T cells (ILT), including γδ T cells (Vδ2s), Natural Killer T cells (NKTs) and Mucosal-associated Invariant T cells (MAITs), integrate innate and adaptive immunity, playing important roles in homeostatic conditions as well as during infection or inflammation. ILT are present on both sides of the fetal-maternal interface, but our knowledge of their phenotypical and functional features in neonates is limited. Using spectral flow cytometry we characterized cord blood ILT in neonates born to healthy women and women living with HIV.
View Article and Find Full Text PDF