Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10837450.2024.2320279DOI Listing

Publication Analysis

Top Keywords

bile salts
24
physicochemical properties
8
properties nanoparticles
8
bile
7
nanoparticles
6
salts
6
bile salt-enriched
4
salt-enriched non-enriched
4
non-enriched nanoparticles
4
nanoparticles comparison
4

Similar Publications

Primary biliary cholangitis (PBC) is a rare disease for which management long consisted of a single treatment: ursodeoxycholic acid. In 2015-2016, this disease regained interest with the first studies on obeticholic acid (FXR agonist) and then on bezafibrate (PPAR agonist). Subsequently, over the past five years, significant progress has been made in the management of PBC.

View Article and Find Full Text PDF

Unlabelled: Lactose intolerance is defined as the inability to digest lactose due to insufficient activity of the β-galactosidase enzyme, which catalyzes the hydrolysis of lactose into glucose and galactose. This study evaluated the potential probiotic properties of isolated S8, which exhibiting high β-galactosidase activity. The strain demonstrated higher survival rate under gastrointestinal stress, with 80% and 63% viability after 3 h in simulated gastric fluid and 8 h in intestinal fluid, respectively, while retaining 60.

View Article and Find Full Text PDF

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF

Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR), expressed in the liver and in the small intestine, is a key regulator of glucose and lipid metabolism. Its pharmacological modulation is explored as a potential treatment for obesity-related metabolic impairments. To develop effective pharmacological interventions, it is crucial to differentiate the individual contributions of intestinal and hepatic FXR to lipid metabolism.

View Article and Find Full Text PDF